Normalized defining polynomial
\( x^{15} - 2691 x^{13} - 21528 x^{12} + 2027042 x^{11} + 33078512 x^{10} - 224467605 x^{9} - 9558128952 x^{8} - 99741836916 x^{7} - 540865750896 x^{6} - 1743471235440 x^{5} - 3514728222720 x^{4} - 4481241502400 x^{3} - 3516947116800 x^{2} - 1553225856000 x - 295852544000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9192733277847478572036540032446527362279872800831959552000000=2^{15}\cdot 5^{6}\cdot 7^{10}\cdot 13^{4}\cdot 827^{2}\cdot 44449^{4}\cdot 28872271^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11{,}593.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 13, 827, 44449, 28872271$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{6} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{10} a^{7} - \frac{1}{10} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{100} a^{8} + \frac{1}{100} a^{6} + \frac{2}{25} a^{5} - \frac{13}{50} a^{4} - \frac{9}{25} a^{3} + \frac{31}{100} a^{2} + \frac{2}{5}$, $\frac{1}{800} a^{9} + \frac{21}{800} a^{7} + \frac{1}{100} a^{6} + \frac{37}{400} a^{5} + \frac{9}{50} a^{4} - \frac{149}{800} a^{3} + \frac{9}{20} a^{2} + \frac{17}{40} a - \frac{1}{2}$, $\frac{1}{1009600} a^{10} - \frac{91}{1009600} a^{8} - \frac{5139}{126200} a^{7} - \frac{7219}{504800} a^{6} - \frac{2977}{63100} a^{5} - \frac{354517}{1009600} a^{4} + \frac{12129}{126200} a^{3} + \frac{19497}{252400} a^{2} + \frac{905}{2524} a - \frac{1074}{3155}$, $\frac{1}{40384000} a^{11} - \frac{1}{2019200} a^{10} + \frac{12529}{40384000} a^{9} - \frac{24967}{10096000} a^{8} + \frac{132571}{20192000} a^{7} - \frac{40531}{5048000} a^{6} + \frac{114587}{1615360} a^{5} - \frac{2150693}{10096000} a^{4} + \frac{1975353}{5048000} a^{3} - \frac{73931}{157750} a^{2} + \frac{72419}{504800} a + \frac{61233}{126200}$, $\frac{1}{403840000} a^{12} + \frac{129}{403840000} a^{10} + \frac{31459}{50480000} a^{9} + \frac{891411}{201920000} a^{8} + \frac{60609}{3155000} a^{7} - \frac{2579993}{80768000} a^{6} - \frac{886339}{50480000} a^{5} + \frac{23597523}{50480000} a^{4} + \frac{1130951}{6310000} a^{3} - \frac{526837}{5048000} a^{2} - \frac{275301}{631000} a + \frac{7747}{63100}$, $\frac{1}{807680000000} a^{13} + \frac{19}{20192000000} a^{12} + \frac{9069}{807680000000} a^{11} + \frac{3633}{12620000000} a^{10} + \frac{240366601}{403840000000} a^{9} - \frac{108914939}{25240000000} a^{8} - \frac{896400753}{161536000000} a^{7} - \frac{3644019377}{50480000000} a^{6} - \frac{5994568409}{201920000000} a^{5} + \frac{13807562039}{50480000000} a^{4} - \frac{1503233087}{10096000000} a^{3} + \frac{50467693}{1262000000} a^{2} - \frac{31319863}{504800000} a + \frac{21419831}{126200000}$, $\frac{1}{14680391680000000} a^{14} - \frac{107}{3670097920000000} a^{13} + \frac{16466189}{14680391680000000} a^{12} - \frac{6161073}{734019584000000} a^{11} - \frac{113625527}{7340195840000000} a^{10} + \frac{1073710334747}{1835048960000000} a^{9} + \frac{9359210077259}{14680391680000000} a^{8} + \frac{54910306180697}{3670097920000000} a^{7} + \frac{30743237194219}{734019584000000} a^{6} - \frac{8105965656997}{229381120000000} a^{5} + \frac{52620032582233}{917524480000000} a^{4} - \frac{343756829871}{1835048960000} a^{3} - \frac{20587020233883}{45876224000000} a^{2} + \frac{30995550821}{1146905600000} a - \frac{248476430307}{573452800000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63171683869200000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1296000 |
| The 53 conjugacy class representatives for [A(5)^3:2]3 are not computed |
| Character table for [A(5)^3:2]3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | $15$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 2.6.9.4 | $x^{6} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.5.4.1 | $x^{5} - 13$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 827 | Data not computed | ||||||
| 44449 | Data not computed | ||||||
| 28872271 | Data not computed | ||||||