Normalized defining polynomial
\( x^{15} - 7 x^{14} - 14319 x^{13} + 527439 x^{12} + 38866636 x^{11} - 2154380624 x^{10} - 8693448072 x^{9} + 2176728943156 x^{8} - 38266269738784 x^{7} - 9894865181840 x^{6} + 6104238185833040 x^{5} - 62169788735286688 x^{4} + 262662521750738480 x^{3} - 509633033085546528 x^{2} + 394561383160313392 x - 50455027118296432 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9102888854247560835776331977265632828069564619432357343409152=2^{10}\cdot 37^{7}\cdot 701^{8}\cdot 1061^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11{,}586.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 701, 1061$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{8} - \frac{1}{12} a^{7} - \frac{1}{12} a^{6} - \frac{1}{12} a^{5} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{24} a^{9} - \frac{1}{24} a^{8} + \frac{5}{24} a^{7} - \frac{1}{24} a^{6} - \frac{1}{4} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{72} a^{10} - \frac{1}{72} a^{9} + \frac{1}{72} a^{8} - \frac{1}{8} a^{7} - \frac{1}{9} a^{6} - \frac{7}{36} a^{5} + \frac{1}{9} a^{4} - \frac{7}{18} a^{3} + \frac{1}{9} a^{2} - \frac{5}{18} a + \frac{1}{9}$, $\frac{1}{144} a^{11} - \frac{1}{144} a^{10} + \frac{1}{144} a^{9} + \frac{1}{48} a^{8} + \frac{1}{9} a^{7} + \frac{5}{72} a^{6} - \frac{5}{18} a^{5} - \frac{4}{9} a^{4} + \frac{1}{18} a^{3} - \frac{17}{36} a^{2} - \frac{5}{18} a + \frac{1}{3}$, $\frac{1}{864} a^{12} - \frac{1}{864} a^{11} - \frac{1}{288} a^{10} + \frac{13}{864} a^{9} - \frac{5}{144} a^{8} + \frac{5}{108} a^{7} + \frac{11}{432} a^{6} - \frac{101}{216} a^{5} - \frac{29}{72} a^{4} + \frac{41}{216} a^{3} + \frac{11}{36} a^{2} + \frac{5}{54} a + \frac{5}{108}$, $\frac{1}{1054944} a^{13} - \frac{1}{2592} a^{12} - \frac{1409}{1054944} a^{11} - \frac{6233}{1054944} a^{10} + \frac{353}{65934} a^{9} - \frac{1240}{32967} a^{8} + \frac{20233}{175824} a^{7} - \frac{13099}{87912} a^{6} + \frac{58673}{263736} a^{5} - \frac{74779}{263736} a^{4} + \frac{12685}{65934} a^{3} - \frac{9596}{32967} a^{2} + \frac{63475}{131868} a + \frac{1192}{32967}$, $\frac{1}{4826149711750187348069561440335250564364801512921025022440280623676624909703721263353599877450738740390637120} a^{14} + \frac{497650959594068896043457946755391712399693712873665184298149286705960450904285870352767438708468802643}{1608716570583395782689853813445083521454933837640341674146760207892208303234573754451199959150246246796879040} a^{13} - \frac{30183259414924931977172481582008913533238099412985590602072119148613493869267547228835480101662368717739}{321743314116679156537970762689016704290986767528068334829352041578441660646914750890239991830049249359375808} a^{12} + \frac{2724684405439738765163481906079448885413526669430993135127941013444243535783370787516385785473174233207453}{1608716570583395782689853813445083521454933837640341674146760207892208303234573754451199959150246246796879040} a^{11} - \frac{553888800971944307581038086573085498643038315126516573336889400935232984544482310284049711337248949724165}{120653742793754683701739036008381264109120037823025625561007015591915622742593031583839996936268468509765928} a^{10} - \frac{10237292732937477233207172257903283093869378833111325481034279249674925222817698652926370885539121148399053}{603268713968773418508695180041906320545600189115128127805035077959578113712965157919199984681342342548829640} a^{9} + \frac{17467910713010468825155754604599989232539057448702021519324558863922042331077822264910488802002721944860897}{2413074855875093674034780720167625282182400756460512511220140311838312454851860631676799938725369370195318560} a^{8} + \frac{42615834153582672722729860672080670844742220621684615274353689569219058860408031320577195974325871859605}{8937314281018865459388076741361575119194076875779675967482001154956712795747631969173333106390256926649328} a^{7} - \frac{17700602400380183174110494837518600167420977282354632427631360143526041454295211908406450277694658698564171}{109685220721595167001580941825801149190109125293659659600915468719923293402357301439854542669334971372514480} a^{6} + \frac{73240451939142914586889843188469632378456772111256591442929977782735690520244670513941949642014734639131283}{402179142645848945672463453361270880363733459410085418536690051973052075808643438612799989787561561699219760} a^{5} - \frac{6596927655217290657663265877285032314633001864696096057806796846070477714460098192431574383337568359332756}{75408589246096677313586897505238290068200023639391015975629384744947264214120644739899998085167792818603705} a^{4} - \frac{67469914945535233151352128161221444436272631483320132359763054678712483833134099516968578293984573493967891}{150817178492193354627173795010476580136400047278782031951258769489894528428241289479799996170335585637207410} a^{3} + \frac{40660196619700954583102868887603734935490310579711749605408752508347556470576715072563604609181410656972407}{201089571322924472836231726680635440181866729705042709268345025986526037904321719306399994893780780849609880} a^{2} + \frac{2219783323492461431614422229349435287319440915458674496632632352754123339503698579410189957655229345408741}{5027239283073111820905793167015886004546668242626067731708625649663150947608042982659999872344519521240247} a + \frac{17365941577578527212612282852366261479223695420949206300717043214181650697156234868778880624313321793472731}{150817178492193354627173795010476580136400047278782031951258769489894528428241289479799996170335585637207410}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8919670142660000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:S_3$ (as 15T14):
| A solvable group of order 150 |
| The 13 conjugacy class representatives for $(C_5^2 : C_3):C_2$ |
| Character table for $(C_5^2 : C_3):C_2$ |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 37 | Data not computed | ||||||
| 701 | Data not computed | ||||||
| 1061 | Data not computed | ||||||