Properties

Label 15.15.8973972499...0000.1
Degree $15$
Signature $[15, 0]$
Discriminant $2^{14}\cdot 3^{6}\cdot 5^{6}\cdot 37^{10}$
Root discriminant $62.64$
Ramified primes $2, 3, 5, 37$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{15} : C_4$ (as 15T6)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-401, -59, 6327, 11401, -2811, -16675, -3339, 9853, 2941, -2993, -829, 483, 91, -37, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 3*x^14 - 37*x^13 + 91*x^12 + 483*x^11 - 829*x^10 - 2993*x^9 + 2941*x^8 + 9853*x^7 - 3339*x^6 - 16675*x^5 - 2811*x^4 + 11401*x^3 + 6327*x^2 - 59*x - 401)
 
gp: K = bnfinit(x^15 - 3*x^14 - 37*x^13 + 91*x^12 + 483*x^11 - 829*x^10 - 2993*x^9 + 2941*x^8 + 9853*x^7 - 3339*x^6 - 16675*x^5 - 2811*x^4 + 11401*x^3 + 6327*x^2 - 59*x - 401, 1)
 

Normalized defining polynomial

\( x^{15} - 3 x^{14} - 37 x^{13} + 91 x^{12} + 483 x^{11} - 829 x^{10} - 2993 x^{9} + 2941 x^{8} + 9853 x^{7} - 3339 x^{6} - 16675 x^{5} - 2811 x^{4} + 11401 x^{3} + 6327 x^{2} - 59 x - 401 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(897397249918108651776000000=2^{14}\cdot 3^{6}\cdot 5^{6}\cdot 37^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $62.64$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{9245081020703485} a^{14} - \frac{1844163124103031}{9245081020703485} a^{13} - \frac{431827069372274}{9245081020703485} a^{12} - \frac{4096153159781267}{9245081020703485} a^{11} + \frac{3752863078416039}{9245081020703485} a^{10} - \frac{2356725767151671}{9245081020703485} a^{9} + \frac{317771030341247}{1849016204140697} a^{8} + \frac{2588056163469991}{9245081020703485} a^{7} + \frac{574712115190805}{1849016204140697} a^{6} - \frac{2651424403047114}{9245081020703485} a^{5} - \frac{685274936187178}{9245081020703485} a^{4} - \frac{4202171411613612}{9245081020703485} a^{3} + \frac{1502003071450282}{9245081020703485} a^{2} + \frac{3586065631830386}{9245081020703485} a - \frac{744731798027582}{9245081020703485}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1159585432.29 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3:F_5$ (as 15T6):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 60
The 9 conjugacy class representatives for $C_{15} : C_4$
Character table for $C_{15} : C_4$

Intermediate fields

3.3.148.1, 5.5.182350800.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 30 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ $15$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ R $15$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ $15$ $15$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.2$x^{4} - 5 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
5.4.2.2$x^{4} - 5 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
5.4.2.2$x^{4} - 5 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
$37$$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
37.2.1.1$x^{2} - 37$$2$$1$$1$$C_2$$[\ ]_{2}$
37.4.3.1$x^{4} - 37$$4$$1$$3$$C_4$$[\ ]_{4}$
37.4.3.1$x^{4} - 37$$4$$1$$3$$C_4$$[\ ]_{4}$
37.4.3.1$x^{4} - 37$$4$$1$$3$$C_4$$[\ ]_{4}$