Normalized defining polynomial
\( x^{15} - 190 x^{13} - 295 x^{12} + 11170 x^{11} + 29483 x^{10} - 198850 x^{9} - 614795 x^{8} + 922090 x^{7} + 4387410 x^{6} + 1717736 x^{5} - 7816650 x^{4} - 9556485 x^{3} - 2437450 x^{2} + 647185 x - 21853 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8604216546410890678897857666015625=5^{18}\cdot 7^{10}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $182.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{7} a^{9} + \frac{1}{7} a^{8} - \frac{1}{7} a^{7} - \frac{2}{7} a^{6} - \frac{3}{7} a^{5} - \frac{3}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} + \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{287} a^{10} + \frac{138}{287} a^{8} - \frac{8}{287} a^{7} - \frac{64}{287} a^{6} - \frac{17}{41} a^{5} - \frac{1}{7} a^{4} - \frac{1}{7} a^{3} - \frac{2}{7} a^{2} + \frac{1}{7}$, $\frac{1}{287} a^{11} + \frac{15}{287} a^{9} - \frac{131}{287} a^{8} + \frac{59}{287} a^{7} + \frac{127}{287} a^{6} + \frac{1}{7} a^{5} + \frac{1}{7} a^{4} - \frac{3}{7} a^{3} + \frac{3}{7} a^{2} - \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{2009} a^{12} - \frac{3}{2009} a^{11} - \frac{2}{2009} a^{10} + \frac{111}{2009} a^{9} - \frac{172}{2009} a^{8} + \frac{660}{2009} a^{7} - \frac{113}{2009} a^{6} - \frac{929}{2009} a^{5} + \frac{18}{49} a^{4} - \frac{20}{49} a^{3} + \frac{23}{49} a^{2} - \frac{4}{49} a - \frac{1}{49}$, $\frac{1}{14063} a^{13} - \frac{2}{14063} a^{12} + \frac{9}{14063} a^{11} - \frac{17}{14063} a^{10} - \frac{712}{14063} a^{9} - \frac{5532}{14063} a^{8} - \frac{4794}{14063} a^{7} + \frac{4495}{14063} a^{6} + \frac{1888}{14063} a^{5} + \frac{152}{343} a^{4} + \frac{129}{343} a^{3} - \frac{9}{343} a^{2} + \frac{93}{343} a - \frac{92}{343}$, $\frac{1}{985794389912272924681485816847} a^{14} - \frac{30721520356410896565312726}{985794389912272924681485816847} a^{13} + \frac{17941022989335774945519235}{140827769987467560668783688121} a^{12} + \frac{188941203322062265590843298}{985794389912272924681485816847} a^{11} - \frac{868424042241759414321304129}{985794389912272924681485816847} a^{10} + \frac{152181371983477981386930288}{10832905383651350820675668317} a^{9} + \frac{260840355765328961812446302486}{985794389912272924681485816847} a^{8} - \frac{40888796839118006523952245092}{985794389912272924681485816847} a^{7} - \frac{268468010404206492154477724733}{985794389912272924681485816847} a^{6} - \frac{54998078922919343744259028140}{140827769987467560668783688121} a^{5} + \frac{6116541440624062731958896516}{24043765607616412797109410167} a^{4} - \frac{719864008017055374672617221}{24043765607616412797109410167} a^{3} + \frac{1606138846000287222426813585}{3434823658230916113872772881} a^{2} + \frac{568767595685881910727505692}{24043765607616412797109410167} a + \frac{779845561047631187459742855}{1849520431355108676700723859}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1691423909070 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:C_6$ (as 15T12):
| A solvable group of order 150 |
| The 10 conjugacy class representatives for $(C_5^2 : C_3):C_2$ |
| Character table for $(C_5^2 : C_3):C_2$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 41 | Data not computed | ||||||