Normalized defining polynomial
\( x^{15} - 190 x^{13} - 225 x^{12} + 11395 x^{11} + 21517 x^{10} - 250100 x^{9} - 633040 x^{8} + 1695760 x^{7} + 6430440 x^{6} + 1502486 x^{5} - 17230250 x^{4} - 28602215 x^{3} - 19903040 x^{2} - 6446635 x - 774941 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8604216546410890678897857666015625=5^{18}\cdot 7^{10}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $182.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{82} a^{10} - \frac{13}{41} a^{8} + \frac{21}{82} a^{7} - \frac{3}{82} a^{6} + \frac{33}{82} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{82} a^{11} + \frac{15}{82} a^{9} - \frac{10}{41} a^{8} + \frac{19}{41} a^{7} + \frac{33}{82} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{1066} a^{12} - \frac{2}{533} a^{11} - \frac{2}{533} a^{10} + \frac{124}{533} a^{9} - \frac{227}{533} a^{8} - \frac{136}{533} a^{7} + \frac{335}{1066} a^{6} - \frac{6}{533} a^{5} - \frac{1}{2} a^{4} - \frac{7}{26} a^{3} - \frac{9}{26} a^{2} - \frac{9}{26} a - \frac{11}{26}$, $\frac{1}{1066} a^{13} + \frac{3}{533} a^{11} - \frac{1}{533} a^{10} - \frac{69}{533} a^{9} + \frac{139}{533} a^{8} - \frac{415}{1066} a^{7} - \frac{155}{533} a^{6} + \frac{225}{1066} a^{5} - \frac{7}{26} a^{4} - \frac{11}{26} a^{3} + \frac{7}{26} a^{2} + \frac{5}{26} a + \frac{4}{13}$, $\frac{1}{6806870325680204950235420731714} a^{14} + \frac{1223553806401970491368312096}{3403435162840102475117710365857} a^{13} + \frac{1246074706142987463611594599}{6806870325680204950235420731714} a^{12} + \frac{9681765715261419454162057057}{6806870325680204950235420731714} a^{11} + \frac{17365378498385840817938757667}{6806870325680204950235420731714} a^{10} - \frac{532915873222398578943616730752}{3403435162840102475117710365857} a^{9} - \frac{379789027592910139330936760144}{3403435162840102475117710365857} a^{8} - \frac{1046714189766317062688985238995}{3403435162840102475117710365857} a^{7} - \frac{414396012822165114399233045205}{3403435162840102475117710365857} a^{6} + \frac{1445105557797988748188305166941}{6806870325680204950235420731714} a^{5} - \frac{16382930463922121958630304137}{83010613727807377441895374777} a^{4} + \frac{29488563953448884457195287467}{83010613727807377441895374777} a^{3} + \frac{60277850223653532067054770491}{166021227455614754883790749554} a^{2} - \frac{862846245121798486006688678}{6385431825215952110915028829} a + \frac{52613069385775948836185760}{180066407218671100741638557}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1909494312040 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 750 |
| The 32 conjugacy class representatives for [5^3:2]3 |
| Character table for [5^3:2]3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | R | $15$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.5.4.3 | $x^{5} - 1476$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 41.5.4.4 | $x^{5} + 8856$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |