Normalized defining polynomial
\( x^{15} - 4 x^{14} - 111 x^{13} + 405 x^{12} + 4716 x^{11} - 14598 x^{10} - 100506 x^{9} + 230773 x^{8} + 1181513 x^{7} - 1552520 x^{6} - 7465131 x^{5} + 2316335 x^{4} + 20264426 x^{3} + 10868994 x^{2} - 3113004 x - 898633 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(844905019931659078085517362176=2^{10}\cdot 11^{12}\cdot 23^{2}\cdot 89^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{3}{8} a^{6} + \frac{3}{8} a^{5} + \frac{3}{8} a^{4} - \frac{1}{4} a^{3} - \frac{3}{8} a^{2} - \frac{1}{8}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{7} - \frac{3}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{48} a^{11} - \frac{1}{24} a^{10} - \frac{1}{48} a^{9} - \frac{1}{16} a^{8} - \frac{5}{48} a^{7} + \frac{7}{24} a^{6} + \frac{11}{48} a^{5} - \frac{1}{6} a^{4} - \frac{5}{12} a^{3} - \frac{1}{12} a^{2} - \frac{1}{24} a - \frac{13}{48}$, $\frac{1}{288} a^{12} - \frac{1}{288} a^{11} + \frac{1}{96} a^{10} + \frac{7}{144} a^{9} + \frac{7}{72} a^{8} + \frac{3}{32} a^{7} + \frac{85}{288} a^{6} + \frac{1}{96} a^{5} + \frac{19}{144} a^{4} + \frac{19}{48} a^{3} - \frac{1}{24} a^{2} + \frac{41}{96} a + \frac{137}{288}$, $\frac{1}{39744} a^{13} + \frac{1}{2208} a^{12} - \frac{125}{19872} a^{11} + \frac{179}{39744} a^{10} - \frac{139}{3312} a^{9} - \frac{2987}{39744} a^{8} - \frac{569}{2484} a^{7} + \frac{4481}{19872} a^{6} - \frac{15331}{39744} a^{5} + \frac{116}{621} a^{4} + \frac{179}{6624} a^{3} + \frac{2521}{13248} a^{2} + \frac{305}{864} a - \frac{113}{1728}$, $\frac{1}{8338647398845188776023975894848} a^{14} - \frac{51481358945375042440782355}{4169323699422594388011987947424} a^{13} + \frac{3680992645548723254657613799}{4169323699422594388011987947424} a^{12} - \frac{72317550907376117669579365745}{8338647398845188776023975894848} a^{11} - \frac{63208850512271510735566403383}{2084661849711297194005993973712} a^{10} - \frac{105025416191051175148362440087}{8338647398845188776023975894848} a^{9} + \frac{251749844358803138808575492831}{2084661849711297194005993973712} a^{8} - \frac{443203625893689730747324570157}{4169323699422594388011987947424} a^{7} + \frac{829316180652599288227935162199}{2779549132948396258674658631616} a^{6} - \frac{41222027541501859626356719201}{90637471726578138869825824944} a^{5} + \frac{1378459808452536173044461911845}{4169323699422594388011987947424} a^{4} + \frac{603522002446429985879629763465}{2779549132948396258674658631616} a^{3} - \frac{1453304561675295726464781228929}{4169323699422594388011987947424} a^{2} + \frac{169297264020896816730960878399}{362549886906312555479303299776} a - \frac{36442208074089636683162949581}{90637471726578138869825824944}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15372643736.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 19440 |
| The 39 conjugacy class representatives for [1/2.S(3)^5]5 |
| Character table for [1/2.S(3)^5]5 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{3}$ | $15$ | $15$ | R | $15$ | $15$ | $15$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | $15$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.10.10.1 | $x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 11 | Data not computed | ||||||
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $89$ | $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.3.2.1 | $x^{3} - 89$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 89.3.2.1 | $x^{3} - 89$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 89.3.2.1 | $x^{3} - 89$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |