Normalized defining polynomial
\( x^{15} - 5 x^{14} - 40 x^{13} + 180 x^{12} + 585 x^{11} - 2349 x^{10} - 3980 x^{9} + 13695 x^{8} + 13045 x^{7} - 34955 x^{6} - 19249 x^{5} + 33245 x^{4} + 9345 x^{3} - 7780 x^{2} - 490 x + 151 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8217006435930728912353515625=5^{24}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(325=5^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{325}(256,·)$, $\chi_{325}(1,·)$, $\chi_{325}(66,·)$, $\chi_{325}(131,·)$, $\chi_{325}(196,·)$, $\chi_{325}(261,·)$, $\chi_{325}(321,·)$, $\chi_{325}(16,·)$, $\chi_{325}(81,·)$, $\chi_{325}(146,·)$, $\chi_{325}(211,·)$, $\chi_{325}(276,·)$, $\chi_{325}(61,·)$, $\chi_{325}(126,·)$, $\chi_{325}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{11} - \frac{2}{7} a^{10} - \frac{1}{7} a^{9} - \frac{1}{7} a^{8} + \frac{3}{7} a^{7} + \frac{1}{7} a^{6} - \frac{2}{7} a^{5} + \frac{2}{7} a^{4} + \frac{2}{7} a^{3} + \frac{3}{7} a^{2} - \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{13} - \frac{3}{7} a^{11} + \frac{1}{7} a^{10} - \frac{3}{7} a^{8} - \frac{2}{7} a^{7} - \frac{3}{7} a^{6} - \frac{3}{7} a^{5} + \frac{1}{7} a^{3} + \frac{1}{7} a^{2} + \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{1065605562735719002843657} a^{14} + \frac{20139632931300850908753}{1065605562735719002843657} a^{13} - \frac{22545411783630783466865}{1065605562735719002843657} a^{12} + \frac{58378003859460592224025}{1065605562735719002843657} a^{11} - \frac{88583657096104786985665}{1065605562735719002843657} a^{10} + \frac{250725216407997293673969}{1065605562735719002843657} a^{9} + \frac{126442943407333605450017}{1065605562735719002843657} a^{8} - \frac{85257264310334073386566}{1065605562735719002843657} a^{7} + \frac{5398890418377332588816}{1065605562735719002843657} a^{6} - \frac{218704565538058300922745}{1065605562735719002843657} a^{5} - \frac{443758242612099692432935}{1065605562735719002843657} a^{4} - \frac{52387610593327281989726}{1065605562735719002843657} a^{3} + \frac{86196600580208868212130}{1065605562735719002843657} a^{2} - \frac{480307167585265399344488}{1065605562735719002843657} a + \frac{453502934308786204294724}{1065605562735719002843657}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1285347259.8659444 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.169.1, 5.5.390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{5}$ | $15$ | R | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| $13$ | 13.15.10.1 | $x^{15} + 79092 x^{6} - 228488 x^{3} + 80199288$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |