Normalized defining polynomial
\( x^{15} - 855 x^{13} - 2470 x^{12} + 273125 x^{11} + 1334484 x^{10} - 41415725 x^{9} - 270977430 x^{8} + 3053529330 x^{7} + 26183048420 x^{6} - 86339970012 x^{5} - 1200406622100 x^{4} - 952711121780 x^{3} + 19747269239240 x^{2} + 70001430753280 x + 71323937370032 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(820758359193064981054673488281250000000000=2^{10}\cdot 5^{18}\cdot 19^{12}\cdot 37^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $622.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{19} a^{5}$, $\frac{1}{38} a^{6} - \frac{1}{38} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{38} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{76} a^{8} - \frac{1}{76} a^{7} - \frac{1}{76} a^{6} - \frac{1}{76} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{76} a^{9} - \frac{1}{76} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{1444} a^{10} - \frac{1}{76} a^{6} - \frac{1}{38} a^{5}$, $\frac{1}{1444} a^{11} - \frac{1}{76} a^{7} - \frac{1}{38} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{1444} a^{12} - \frac{1}{76} a^{7} - \frac{1}{76} a^{6} - \frac{1}{76} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2888} a^{13} - \frac{1}{2888} a^{12} - \frac{1}{152} a^{9} - \frac{1}{152} a^{8} - \frac{1}{76} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{34943970012097425169416691834202004942066642831020082344} a^{14} + \frac{516664398332141440026198316259667727108240533159411}{34943970012097425169416691834202004942066642831020082344} a^{13} - \frac{162093063936623615444718854087280630069468236681863}{17471985006048712584708345917101002471033321415510041172} a^{12} + \frac{3785475872885597306322006700904006080545510021939981}{17471985006048712584708345917101002471033321415510041172} a^{11} + \frac{11627436139589045342389444422284682354031478762935927}{34943970012097425169416691834202004942066642831020082344} a^{10} - \frac{328162521526338645794802119360903438190350951711075}{96797700864535803793398038321889210365835575709196904} a^{9} - \frac{2332378611739286991103458266903712955530373780398851}{919578158213090136037281364057947498475437969237370588} a^{8} - \frac{41158298573378912521181171355437283232914604371349}{24199425216133950948349509580472302591458893927299226} a^{7} - \frac{251821515898788640596111186516779109980124803427681}{24199425216133950948349509580472302591458893927299226} a^{6} + \frac{22219321771575561108163084189715732027601208927619489}{919578158213090136037281364057947498475437969237370588} a^{5} + \frac{7069288666239749779888579575576585667692992266797861}{24199425216133950948349509580472302591458893927299226} a^{4} + \frac{6327914129333825282426038625529981235742172907424483}{24199425216133950948349509580472302591458893927299226} a^{3} + \frac{6936705913404712820060856773929690518742881645621487}{24199425216133950948349509580472302591458893927299226} a^{2} + \frac{671947021260189451613598685758497728673453364130979}{12099712608066975474174754790236151295729446963649613} a - \frac{4092460004585020634301320710151213546764463697470919}{12099712608066975474174754790236151295729446963649613}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 607452564706000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:D_6$ (as 15T18):
| A solvable group of order 300 |
| The 14 conjugacy class representatives for $((C_5^2 : C_3):C_2):C_2$ |
| Character table for $((C_5^2 : C_3):C_2):C_2$ |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{5}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $5$ | 5.5.6.1 | $x^{5} + 10 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ |
| 5.10.12.10 | $x^{10} + 10 x^{8} + 20 x^{7} + 15 x^{6} - 5 x^{5} + 5 x^{4} + 5 x^{2} - 5 x + 7$ | $5$ | $2$ | $12$ | $D_{10}$ | $[3/2]_{2}^{2}$ | |
| $19$ | 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ |
| 19.10.8.2 | $x^{10} - 19 x^{5} + 722$ | $5$ | $2$ | $8$ | $D_5\times C_5$ | $[\ ]_{5}^{10}$ | |
| 37 | Data not computed | ||||||