Normalized defining polynomial
\( x^{15} - 3 x^{14} - 60 x^{13} + 114 x^{12} + 1311 x^{11} - 1311 x^{10} - 13178 x^{9} + 3897 x^{8} + 62079 x^{7} + 12471 x^{6} - 121443 x^{5} - 49737 x^{4} + 91153 x^{3} + 39540 x^{2} - 22284 x - 8373 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(78674026011431622215094122481=3^{20}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(369=3^{2}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{369}(256,·)$, $\chi_{369}(1,·)$, $\chi_{369}(100,·)$, $\chi_{369}(133,·)$, $\chi_{369}(262,·)$, $\chi_{369}(10,·)$, $\chi_{369}(139,·)$, $\chi_{369}(223,·)$, $\chi_{369}(16,·)$, $\chi_{369}(247,·)$, $\chi_{369}(160,·)$, $\chi_{369}(346,·)$, $\chi_{369}(283,·)$, $\chi_{369}(124,·)$, $\chi_{369}(37,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{9} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{9} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{27} a^{11} - \frac{1}{27} a^{10} + \frac{1}{27} a^{9} - \frac{1}{3} a^{8} + \frac{4}{9} a^{7} + \frac{1}{3} a^{6} - \frac{4}{27} a^{5} + \frac{13}{27} a^{4} - \frac{10}{27} a^{3} - \frac{1}{3} a^{2} - \frac{1}{9} a + \frac{4}{9}$, $\frac{1}{27} a^{12} + \frac{1}{27} a^{9} + \frac{1}{9} a^{8} - \frac{2}{9} a^{7} + \frac{5}{27} a^{6} + \frac{1}{3} a^{5} + \frac{1}{9} a^{4} - \frac{1}{27} a^{3} - \frac{4}{9} a^{2} + \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{27} a^{13} + \frac{1}{27} a^{10} - \frac{2}{9} a^{8} - \frac{13}{27} a^{7} - \frac{1}{3} a^{6} - \frac{2}{9} a^{5} + \frac{8}{27} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{247777074773292112323183} a^{14} - \frac{705274630823863672748}{247777074773292112323183} a^{13} - \frac{2430625709956914947786}{247777074773292112323183} a^{12} - \frac{102561143434855437110}{247777074773292112323183} a^{11} - \frac{11386445993895967462721}{247777074773292112323183} a^{10} - \frac{10428995225825563346111}{247777074773292112323183} a^{9} - \frac{115962792829947720261808}{247777074773292112323183} a^{8} + \frac{48761865471794255094806}{247777074773292112323183} a^{7} + \frac{13750592488952216200529}{247777074773292112323183} a^{6} + \frac{59146732706882301215837}{247777074773292112323183} a^{5} - \frac{61222534302805884850207}{247777074773292112323183} a^{4} + \frac{440994498804996662426}{3394206503743727566071} a^{3} - \frac{3204243007970555119690}{27530786085921345813687} a^{2} - \frac{421259980422527741177}{1131402167914575855357} a - \frac{28277535747481739465198}{82592358257764037441061}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18946465206.742867 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 5.5.2825761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | R | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ | R | $15$ | $15$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $41$ | 41.15.12.1 | $x^{15} + 2665 x^{10} + 1418764 x^{5} + 25589884853$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |