Normalized defining polynomial
\( x^{15} - 5 x^{14} - 65 x^{13} + 200 x^{12} + 1855 x^{11} - 1901 x^{10} - 25345 x^{9} - 12110 x^{8} + 140785 x^{7} + 212285 x^{6} - 130655 x^{5} - 431210 x^{4} - 230470 x^{3} - 6800 x^{2} + 14680 x + 1132 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7599770770692830625000000000000=2^{12}\cdot 3^{16}\cdot 5^{16}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $114.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{12} - \frac{1}{10} a^{11} - \frac{1}{2} a^{9} - \frac{3}{10} a^{8} + \frac{3}{10} a^{7} - \frac{1}{5} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{10} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{627011966662309632718618550} a^{14} + \frac{14681849166855160180970763}{627011966662309632718618550} a^{13} + \frac{44638151644362531874836259}{627011966662309632718618550} a^{12} - \frac{122452988602657256326740074}{313505983331154816359309275} a^{11} - \frac{151878028007934721894130329}{627011966662309632718618550} a^{10} - \frac{156254924317444952906630553}{627011966662309632718618550} a^{9} - \frac{146654445269793201683107449}{627011966662309632718618550} a^{8} - \frac{30797752283611174589933756}{313505983331154816359309275} a^{7} + \frac{65413022910014931647579899}{627011966662309632718618550} a^{6} + \frac{4185815874214738506245127}{627011966662309632718618550} a^{5} + \frac{13727173052667080140252121}{627011966662309632718618550} a^{4} + \frac{39508629272830723967727134}{313505983331154816359309275} a^{3} - \frac{97237122202507982706774253}{313505983331154816359309275} a^{2} - \frac{79701880174043931763446484}{313505983331154816359309275} a - \frac{35925853801579218863773257}{313505983331154816359309275}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 273937438532 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1620 |
| The 21 conjugacy class representatives for 1/2[3^4:2]F(5) |
| Character table for 1/2[3^4:2]F(5) is not computed |
Intermediate fields
| 5.5.2450000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.12.16.3 | $x^{12} + 84 x^{11} - 108 x^{10} - 99 x^{9} - 54 x^{8} - 81 x^{7} - 27 x^{6} - 108 x^{5} + 27 x^{3} + 81 x^{2} - 81$ | $3$ | $4$ | $16$ | 12T73 | $[2, 2]^{12}$ | |
| $5$ | 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.1 | $x^{10} + 20 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.12.10.4 | $x^{12} - 7 x^{6} + 147$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |