Normalized defining polynomial
\( x^{15} - 2 x^{14} - 83 x^{13} + 140 x^{12} + 2380 x^{11} - 3320 x^{10} - 29682 x^{9} + 34801 x^{8} + 167356 x^{7} - 161206 x^{6} - 393515 x^{5} + 250272 x^{4} + 359552 x^{3} - 96207 x^{2} - 115927 x - 9659 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(749787887447605250170677896929=7^{10}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(427=7\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{427}(1,·)$, $\chi_{427}(386,·)$, $\chi_{427}(424,·)$, $\chi_{427}(9,·)$, $\chi_{427}(142,·)$, $\chi_{427}(400,·)$, $\chi_{427}(81,·)$, $\chi_{427}(302,·)$, $\chi_{427}(375,·)$, $\chi_{427}(184,·)$, $\chi_{427}(58,·)$, $\chi_{427}(123,·)$, $\chi_{427}(156,·)$, $\chi_{427}(253,·)$, $\chi_{427}(95,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{377} a^{11} + \frac{170}{377} a^{10} - \frac{75}{377} a^{9} - \frac{34}{377} a^{8} - \frac{28}{377} a^{7} + \frac{164}{377} a^{6} - \frac{139}{377} a^{5} - \frac{6}{377} a^{4} + \frac{28}{377} a^{3} + \frac{55}{377} a^{2} - \frac{19}{377} a - \frac{9}{29}$, $\frac{1}{377} a^{12} + \frac{54}{377} a^{10} - \frac{102}{377} a^{9} + \frac{97}{377} a^{8} + \frac{23}{377} a^{7} - \frac{121}{377} a^{6} - \frac{127}{377} a^{5} - \frac{83}{377} a^{4} - \frac{181}{377} a^{3} + \frac{56}{377} a^{2} + \frac{97}{377} a - \frac{7}{29}$, $\frac{1}{377} a^{13} + \frac{11}{29} a^{10} - \frac{2}{29} a^{8} - \frac{9}{29} a^{7} + \frac{5}{29} a^{6} - \frac{9}{29} a^{5} + \frac{11}{29} a^{4} + \frac{4}{29} a^{3} + \frac{11}{29} a^{2} + \frac{181}{377} a - \frac{7}{29}$, $\frac{1}{11596580113307505149456555491} a^{14} - \frac{241475482704049086735156}{892044624100577319188965807} a^{13} + \frac{10416199444912154592911307}{11596580113307505149456555491} a^{12} - \frac{8541617538589262841880801}{11596580113307505149456555491} a^{11} - \frac{82853649157921065159488639}{11596580113307505149456555491} a^{10} - \frac{4405138108537933846919201114}{11596580113307505149456555491} a^{9} + \frac{3032111070392277667345599640}{11596580113307505149456555491} a^{8} + \frac{5059748894850686130185710512}{11596580113307505149456555491} a^{7} + \frac{13912758340282615619646384}{30760159451744045489274683} a^{6} + \frac{5723878275970685696867206186}{11596580113307505149456555491} a^{5} + \frac{3682561226113516585242287228}{11596580113307505149456555491} a^{4} + \frac{1433625488645005312176185960}{11596580113307505149456555491} a^{3} + \frac{4367661785916006644898844813}{11596580113307505149456555491} a^{2} + \frac{5443749825697130557396316464}{11596580113307505149456555491} a + \frac{16802890968627675469513680}{892044624100577319188965807}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32336716619.23167 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 5.5.13845841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | $15$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{15}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{15}$ | $15$ | $15$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.15.10.1 | $x^{15} + 4116 x^{6} - 2401 x^{3} + 1075648$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |
| $61$ | 61.15.12.1 | $x^{15} + 3050 x^{10} + 1856779 x^{5} + 22698100000$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |