Normalized defining polynomial
\( x^{15} - 5 x^{14} - 130 x^{13} + 680 x^{12} + 4795 x^{11} - 22891 x^{10} - 81630 x^{9} + 307730 x^{8} + 699700 x^{7} - 1750400 x^{6} - 2594116 x^{5} + 4119760 x^{4} + 2177500 x^{3} - 4274080 x^{2} + 1700980 x - 210244 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(74477753552789740125000000000000=2^{12}\cdot 3^{16}\cdot 5^{15}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $133.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{10} - \frac{1}{10} a^{9} - \frac{2}{5} a^{7} + \frac{3}{10} a^{6} + \frac{3}{10} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{11} - \frac{1}{10} a^{9} + \frac{1}{10} a^{7} - \frac{1}{5} a^{6} + \frac{3}{10} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{20} a^{12} - \frac{1}{20} a^{11} - \frac{1}{10} a^{9} - \frac{1}{20} a^{8} - \frac{1}{20} a^{7} - \frac{1}{10} a^{6} - \frac{2}{5} a^{4} + \frac{3}{10} a^{3} - \frac{1}{2} a^{2} + \frac{2}{5} a$, $\frac{1}{20} a^{13} - \frac{1}{20} a^{11} - \frac{1}{20} a^{9} - \frac{1}{10} a^{8} + \frac{1}{4} a^{7} - \frac{2}{5} a^{6} + \frac{3}{10} a^{5} + \frac{3}{10} a^{4} - \frac{1}{5} a^{3} - \frac{1}{2} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{611320401926445433979337963687688820} a^{14} - \frac{13862922040952699881875405503499207}{611320401926445433979337963687688820} a^{13} + \frac{14987857729210411378404257095993369}{611320401926445433979337963687688820} a^{12} - \frac{21705338653458117750378261716182651}{611320401926445433979337963687688820} a^{11} - \frac{14757032094771977533216709089334253}{611320401926445433979337963687688820} a^{10} - \frac{10459297752015052943237528848521051}{611320401926445433979337963687688820} a^{9} - \frac{25325022496746467303896199874677931}{611320401926445433979337963687688820} a^{8} + \frac{66865346157132972688702981668050983}{611320401926445433979337963687688820} a^{7} - \frac{23091431123343471991424828216681739}{61132040192644543397933796368768882} a^{6} - \frac{33509771884599476938759287411808787}{152830100481611358494834490921922205} a^{5} - \frac{21403498915840951216522987521072471}{61132040192644543397933796368768882} a^{4} + \frac{5114040572612070173980442363163809}{305660200963222716989668981843844410} a^{3} + \frac{21580067429010824097533246873279909}{305660200963222716989668981843844410} a^{2} - \frac{24395922770282900609928626749590241}{152830100481611358494834490921922205} a + \frac{15121958902106858645002282114067919}{152830100481611358494834490921922205}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 477769896295 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1620 |
| The 21 conjugacy class representatives for [3^4]F(5) |
| Character table for [3^4]F(5) is not computed |
Intermediate fields
| 5.5.2450000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.12.16.9 | $x^{12} + 117 x^{11} + 81 x^{10} - 39 x^{9} + 18 x^{8} - 108 x^{7} + 63 x^{6} - 54 x^{5} - 81 x^{4} - 54 x^{3} - 81 x^{2} - 81$ | $3$ | $4$ | $16$ | 12T73 | $[2, 2]^{12}$ | |
| $5$ | 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ |
| 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ | |
| 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ | |
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.12.10.4 | $x^{12} - 7 x^{6} + 147$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |