Properties

Label 15.15.736...000.1
Degree $15$
Signature $[15, 0]$
Discriminant $7.361\times 10^{30}$
Root discriminant \(114.23\)
Ramified primes $2,5,19,37$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $((C_5^2 : C_3):C_2):C_2$ (as 15T18)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 2*x^14 - 138*x^13 + 459*x^12 + 6294*x^11 - 29158*x^10 - 90469*x^9 + 640304*x^8 - 282922*x^7 - 3320427*x^6 + 5075634*x^5 + 1483772*x^4 - 5986612*x^3 + 1193096*x^2 + 1830056*x - 504860)
 
gp: K = bnfinit(y^15 - 2*y^14 - 138*y^13 + 459*y^12 + 6294*y^11 - 29158*y^10 - 90469*y^9 + 640304*y^8 - 282922*y^7 - 3320427*y^6 + 5075634*y^5 + 1483772*y^4 - 5986612*y^3 + 1193096*y^2 + 1830056*y - 504860, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^15 - 2*x^14 - 138*x^13 + 459*x^12 + 6294*x^11 - 29158*x^10 - 90469*x^9 + 640304*x^8 - 282922*x^7 - 3320427*x^6 + 5075634*x^5 + 1483772*x^4 - 5986612*x^3 + 1193096*x^2 + 1830056*x - 504860);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 2*x^14 - 138*x^13 + 459*x^12 + 6294*x^11 - 29158*x^10 - 90469*x^9 + 640304*x^8 - 282922*x^7 - 3320427*x^6 + 5075634*x^5 + 1483772*x^4 - 5986612*x^3 + 1193096*x^2 + 1830056*x - 504860)
 

\( x^{15} - 2 x^{14} - 138 x^{13} + 459 x^{12} + 6294 x^{11} - 29158 x^{10} - 90469 x^{9} + 640304 x^{8} + \cdots - 504860 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $15$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[15, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(7360671657636832731250000000000\) \(\medspace = 2^{10}\cdot 5^{14}\cdot 19^{8}\cdot 37^{5}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(114.23\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}5^{13/10}19^{4/5}37^{1/2}\approx 824.9951818970933$
Ramified primes:   \(2\), \(5\), \(19\), \(37\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{37}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{13}+\frac{1}{4}a^{10}+\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{73\!\cdots\!32}a^{14}-\frac{94\!\cdots\!49}{85\!\cdots\!62}a^{13}+\frac{73\!\cdots\!61}{36\!\cdots\!66}a^{12}-\frac{81\!\cdots\!51}{73\!\cdots\!32}a^{11}+\frac{14\!\cdots\!27}{36\!\cdots\!66}a^{10}+\frac{69\!\cdots\!89}{36\!\cdots\!66}a^{9}+\frac{32\!\cdots\!41}{73\!\cdots\!32}a^{8}+\frac{73\!\cdots\!79}{18\!\cdots\!33}a^{7}+\frac{34\!\cdots\!73}{36\!\cdots\!66}a^{6}-\frac{15\!\cdots\!61}{73\!\cdots\!32}a^{5}-\frac{17\!\cdots\!87}{36\!\cdots\!66}a^{4}-\frac{14\!\cdots\!60}{18\!\cdots\!33}a^{3}+\frac{14\!\cdots\!89}{36\!\cdots\!66}a^{2}-\frac{33\!\cdots\!36}{18\!\cdots\!33}a-\frac{59\!\cdots\!11}{18\!\cdots\!33}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{97\!\cdots\!61}{33\!\cdots\!14}a^{14}-\frac{34\!\cdots\!61}{16\!\cdots\!07}a^{13}-\frac{13\!\cdots\!53}{33\!\cdots\!14}a^{12}+\frac{13\!\cdots\!12}{16\!\cdots\!07}a^{11}+\frac{64\!\cdots\!97}{33\!\cdots\!14}a^{10}-\frac{99\!\cdots\!19}{16\!\cdots\!07}a^{9}-\frac{11\!\cdots\!59}{33\!\cdots\!14}a^{8}+\frac{23\!\cdots\!52}{16\!\cdots\!07}a^{7}+\frac{33\!\cdots\!43}{33\!\cdots\!14}a^{6}-\frac{13\!\cdots\!25}{16\!\cdots\!07}a^{5}+\frac{13\!\cdots\!29}{33\!\cdots\!14}a^{4}+\frac{15\!\cdots\!06}{16\!\cdots\!07}a^{3}-\frac{86\!\cdots\!06}{16\!\cdots\!07}a^{2}-\frac{54\!\cdots\!72}{16\!\cdots\!07}a+\frac{18\!\cdots\!91}{16\!\cdots\!07}$, $\frac{10\!\cdots\!20}{16\!\cdots\!07}a^{14}-\frac{76\!\cdots\!28}{16\!\cdots\!07}a^{13}-\frac{14\!\cdots\!98}{16\!\cdots\!07}a^{12}+\frac{30\!\cdots\!23}{16\!\cdots\!07}a^{11}+\frac{71\!\cdots\!83}{16\!\cdots\!07}a^{10}-\frac{22\!\cdots\!45}{16\!\cdots\!07}a^{9}-\frac{12\!\cdots\!16}{16\!\cdots\!07}a^{8}+\frac{52\!\cdots\!59}{16\!\cdots\!07}a^{7}+\frac{37\!\cdots\!01}{16\!\cdots\!07}a^{6}-\frac{30\!\cdots\!76}{16\!\cdots\!07}a^{5}+\frac{14\!\cdots\!00}{16\!\cdots\!07}a^{4}+\frac{34\!\cdots\!88}{16\!\cdots\!07}a^{3}-\frac{19\!\cdots\!47}{16\!\cdots\!07}a^{2}-\frac{11\!\cdots\!38}{16\!\cdots\!07}a+\frac{42\!\cdots\!71}{16\!\cdots\!07}$, $\frac{31\!\cdots\!71}{73\!\cdots\!32}a^{14}-\frac{25\!\cdots\!55}{85\!\cdots\!62}a^{13}-\frac{21\!\cdots\!33}{36\!\cdots\!66}a^{12}+\frac{87\!\cdots\!03}{73\!\cdots\!32}a^{11}+\frac{10\!\cdots\!45}{36\!\cdots\!66}a^{10}-\frac{32\!\cdots\!35}{36\!\cdots\!66}a^{9}-\frac{36\!\cdots\!33}{73\!\cdots\!32}a^{8}+\frac{38\!\cdots\!07}{18\!\cdots\!33}a^{7}+\frac{54\!\cdots\!07}{36\!\cdots\!66}a^{6}-\frac{90\!\cdots\!19}{73\!\cdots\!32}a^{5}+\frac{21\!\cdots\!01}{36\!\cdots\!66}a^{4}+\frac{25\!\cdots\!78}{18\!\cdots\!33}a^{3}-\frac{28\!\cdots\!23}{36\!\cdots\!66}a^{2}-\frac{87\!\cdots\!30}{18\!\cdots\!33}a+\frac{30\!\cdots\!46}{18\!\cdots\!33}$, $\frac{19\!\cdots\!05}{36\!\cdots\!66}a^{14}-\frac{32\!\cdots\!13}{85\!\cdots\!62}a^{13}-\frac{13\!\cdots\!03}{18\!\cdots\!33}a^{12}+\frac{27\!\cdots\!72}{18\!\cdots\!33}a^{11}+\frac{65\!\cdots\!10}{18\!\cdots\!33}a^{10}-\frac{40\!\cdots\!81}{36\!\cdots\!66}a^{9}-\frac{23\!\cdots\!61}{36\!\cdots\!66}a^{8}+\frac{96\!\cdots\!51}{36\!\cdots\!66}a^{7}+\frac{34\!\cdots\!29}{18\!\cdots\!33}a^{6}-\frac{28\!\cdots\!08}{18\!\cdots\!33}a^{5}+\frac{13\!\cdots\!24}{18\!\cdots\!33}a^{4}+\frac{64\!\cdots\!09}{36\!\cdots\!66}a^{3}-\frac{17\!\cdots\!28}{18\!\cdots\!33}a^{2}-\frac{11\!\cdots\!89}{18\!\cdots\!33}a+\frac{38\!\cdots\!52}{18\!\cdots\!33}$, $\frac{22\!\cdots\!75}{36\!\cdots\!66}a^{14}-\frac{73\!\cdots\!77}{17\!\cdots\!24}a^{13}-\frac{31\!\cdots\!59}{36\!\cdots\!66}a^{12}+\frac{62\!\cdots\!59}{36\!\cdots\!66}a^{11}+\frac{29\!\cdots\!33}{73\!\cdots\!32}a^{10}-\frac{46\!\cdots\!55}{36\!\cdots\!66}a^{9}-\frac{26\!\cdots\!31}{36\!\cdots\!66}a^{8}+\frac{22\!\cdots\!41}{73\!\cdots\!32}a^{7}+\frac{39\!\cdots\!87}{18\!\cdots\!33}a^{6}-\frac{64\!\cdots\!29}{36\!\cdots\!66}a^{5}+\frac{61\!\cdots\!71}{73\!\cdots\!32}a^{4}+\frac{73\!\cdots\!15}{36\!\cdots\!66}a^{3}-\frac{40\!\cdots\!03}{36\!\cdots\!66}a^{2}-\frac{25\!\cdots\!07}{36\!\cdots\!66}a+\frac{43\!\cdots\!63}{18\!\cdots\!33}$, $\frac{12\!\cdots\!71}{73\!\cdots\!32}a^{14}-\frac{11\!\cdots\!51}{85\!\cdots\!62}a^{13}-\frac{44\!\cdots\!97}{18\!\cdots\!33}a^{12}+\frac{36\!\cdots\!51}{73\!\cdots\!32}a^{11}+\frac{43\!\cdots\!41}{36\!\cdots\!66}a^{10}-\frac{67\!\cdots\!90}{18\!\cdots\!33}a^{9}-\frac{15\!\cdots\!69}{73\!\cdots\!32}a^{8}+\frac{15\!\cdots\!47}{18\!\cdots\!33}a^{7}+\frac{10\!\cdots\!62}{18\!\cdots\!33}a^{6}-\frac{37\!\cdots\!79}{73\!\cdots\!32}a^{5}+\frac{92\!\cdots\!91}{36\!\cdots\!66}a^{4}+\frac{21\!\cdots\!09}{36\!\cdots\!66}a^{3}-\frac{12\!\cdots\!37}{36\!\cdots\!66}a^{2}-\frac{36\!\cdots\!63}{18\!\cdots\!33}a+\frac{13\!\cdots\!01}{18\!\cdots\!33}$, $\frac{38\!\cdots\!27}{73\!\cdots\!32}a^{14}-\frac{28\!\cdots\!11}{85\!\cdots\!62}a^{13}-\frac{26\!\cdots\!05}{36\!\cdots\!66}a^{12}+\frac{10\!\cdots\!81}{73\!\cdots\!32}a^{11}+\frac{64\!\cdots\!94}{18\!\cdots\!33}a^{10}-\frac{19\!\cdots\!96}{18\!\cdots\!33}a^{9}-\frac{45\!\cdots\!65}{73\!\cdots\!32}a^{8}+\frac{46\!\cdots\!79}{18\!\cdots\!33}a^{7}+\frac{72\!\cdots\!87}{36\!\cdots\!66}a^{6}-\frac{10\!\cdots\!09}{73\!\cdots\!32}a^{5}+\frac{11\!\cdots\!28}{18\!\cdots\!33}a^{4}+\frac{61\!\cdots\!71}{36\!\cdots\!66}a^{3}-\frac{30\!\cdots\!23}{36\!\cdots\!66}a^{2}-\frac{10\!\cdots\!51}{18\!\cdots\!33}a+\frac{35\!\cdots\!73}{18\!\cdots\!33}$, $\frac{35\!\cdots\!27}{73\!\cdots\!32}a^{14}-\frac{54\!\cdots\!61}{17\!\cdots\!24}a^{13}-\frac{12\!\cdots\!09}{18\!\cdots\!33}a^{12}+\frac{97\!\cdots\!07}{73\!\cdots\!32}a^{11}+\frac{23\!\cdots\!93}{73\!\cdots\!32}a^{10}-\frac{18\!\cdots\!52}{18\!\cdots\!33}a^{9}-\frac{42\!\cdots\!05}{73\!\cdots\!32}a^{8}+\frac{17\!\cdots\!03}{73\!\cdots\!32}a^{7}+\frac{65\!\cdots\!99}{36\!\cdots\!66}a^{6}-\frac{10\!\cdots\!47}{73\!\cdots\!32}a^{5}+\frac{45\!\cdots\!63}{73\!\cdots\!32}a^{4}+\frac{57\!\cdots\!41}{36\!\cdots\!66}a^{3}-\frac{15\!\cdots\!61}{18\!\cdots\!33}a^{2}-\frac{19\!\cdots\!53}{36\!\cdots\!66}a+\frac{33\!\cdots\!14}{18\!\cdots\!33}$, $\frac{31\!\cdots\!51}{36\!\cdots\!66}a^{14}-\frac{51\!\cdots\!75}{85\!\cdots\!62}a^{13}-\frac{43\!\cdots\!73}{36\!\cdots\!66}a^{12}+\frac{43\!\cdots\!83}{18\!\cdots\!33}a^{11}+\frac{10\!\cdots\!19}{18\!\cdots\!33}a^{10}-\frac{31\!\cdots\!62}{18\!\cdots\!33}a^{9}-\frac{36\!\cdots\!67}{36\!\cdots\!66}a^{8}+\frac{15\!\cdots\!47}{36\!\cdots\!66}a^{7}+\frac{10\!\cdots\!35}{36\!\cdots\!66}a^{6}-\frac{44\!\cdots\!09}{18\!\cdots\!33}a^{5}+\frac{21\!\cdots\!60}{18\!\cdots\!33}a^{4}+\frac{50\!\cdots\!83}{18\!\cdots\!33}a^{3}-\frac{27\!\cdots\!94}{18\!\cdots\!33}a^{2}-\frac{17\!\cdots\!94}{18\!\cdots\!33}a+\frac{60\!\cdots\!43}{18\!\cdots\!33}$, $\frac{71\!\cdots\!84}{18\!\cdots\!33}a^{14}-\frac{11\!\cdots\!44}{42\!\cdots\!31}a^{13}-\frac{99\!\cdots\!34}{18\!\cdots\!33}a^{12}+\frac{20\!\cdots\!28}{18\!\cdots\!33}a^{11}+\frac{47\!\cdots\!86}{18\!\cdots\!33}a^{10}-\frac{14\!\cdots\!96}{18\!\cdots\!33}a^{9}-\frac{83\!\cdots\!23}{18\!\cdots\!33}a^{8}+\frac{35\!\cdots\!51}{18\!\cdots\!33}a^{7}+\frac{25\!\cdots\!82}{18\!\cdots\!33}a^{6}-\frac{20\!\cdots\!81}{18\!\cdots\!33}a^{5}+\frac{97\!\cdots\!73}{18\!\cdots\!33}a^{4}+\frac{23\!\cdots\!19}{18\!\cdots\!33}a^{3}-\frac{12\!\cdots\!97}{18\!\cdots\!33}a^{2}-\frac{79\!\cdots\!14}{18\!\cdots\!33}a+\frac{27\!\cdots\!93}{18\!\cdots\!33}$, $\frac{29\!\cdots\!35}{36\!\cdots\!66}a^{14}+\frac{72\!\cdots\!53}{17\!\cdots\!24}a^{13}-\frac{51\!\cdots\!75}{36\!\cdots\!66}a^{12}-\frac{10\!\cdots\!85}{18\!\cdots\!33}a^{11}+\frac{12\!\cdots\!33}{73\!\cdots\!32}a^{10}+\frac{47\!\cdots\!03}{18\!\cdots\!33}a^{9}-\frac{36\!\cdots\!63}{36\!\cdots\!66}a^{8}-\frac{30\!\cdots\!25}{73\!\cdots\!32}a^{7}+\frac{38\!\cdots\!96}{18\!\cdots\!33}a^{6}+\frac{76\!\cdots\!23}{18\!\cdots\!33}a^{5}-\frac{76\!\cdots\!57}{73\!\cdots\!32}a^{4}+\frac{17\!\cdots\!66}{18\!\cdots\!33}a^{3}+\frac{11\!\cdots\!11}{36\!\cdots\!66}a^{2}-\frac{15\!\cdots\!23}{36\!\cdots\!66}a+\frac{15\!\cdots\!43}{18\!\cdots\!33}$, $\frac{35\!\cdots\!65}{73\!\cdots\!32}a^{14}-\frac{59\!\cdots\!35}{17\!\cdots\!24}a^{13}-\frac{12\!\cdots\!80}{18\!\cdots\!33}a^{12}+\frac{99\!\cdots\!81}{73\!\cdots\!32}a^{11}+\frac{23\!\cdots\!51}{73\!\cdots\!32}a^{10}-\frac{18\!\cdots\!06}{18\!\cdots\!33}a^{9}-\frac{41\!\cdots\!27}{73\!\cdots\!32}a^{8}+\frac{17\!\cdots\!01}{73\!\cdots\!32}a^{7}+\frac{61\!\cdots\!13}{36\!\cdots\!66}a^{6}-\frac{10\!\cdots\!81}{73\!\cdots\!32}a^{5}+\frac{49\!\cdots\!89}{73\!\cdots\!32}a^{4}+\frac{57\!\cdots\!57}{36\!\cdots\!66}a^{3}-\frac{16\!\cdots\!55}{18\!\cdots\!33}a^{2}-\frac{19\!\cdots\!17}{36\!\cdots\!66}a+\frac{36\!\cdots\!56}{18\!\cdots\!33}$, $\frac{48\!\cdots\!95}{73\!\cdots\!32}a^{14}-\frac{55\!\cdots\!35}{85\!\cdots\!62}a^{13}-\frac{33\!\cdots\!53}{36\!\cdots\!66}a^{12}+\frac{75\!\cdots\!81}{73\!\cdots\!32}a^{11}+\frac{54\!\cdots\!87}{18\!\cdots\!33}a^{10}-\frac{10\!\cdots\!15}{18\!\cdots\!33}a^{9}+\frac{25\!\cdots\!99}{73\!\cdots\!32}a^{8}+\frac{19\!\cdots\!57}{18\!\cdots\!33}a^{7}-\frac{92\!\cdots\!39}{36\!\cdots\!66}a^{6}-\frac{35\!\cdots\!65}{73\!\cdots\!32}a^{5}+\frac{32\!\cdots\!67}{18\!\cdots\!33}a^{4}-\frac{42\!\cdots\!37}{36\!\cdots\!66}a^{3}-\frac{80\!\cdots\!85}{36\!\cdots\!66}a^{2}+\frac{72\!\cdots\!13}{18\!\cdots\!33}a+\frac{15\!\cdots\!21}{18\!\cdots\!33}$, $\frac{16\!\cdots\!20}{18\!\cdots\!33}a^{14}-\frac{12\!\cdots\!81}{17\!\cdots\!24}a^{13}-\frac{23\!\cdots\!72}{18\!\cdots\!33}a^{12}+\frac{97\!\cdots\!53}{36\!\cdots\!66}a^{11}+\frac{44\!\cdots\!27}{73\!\cdots\!32}a^{10}-\frac{70\!\cdots\!43}{36\!\cdots\!66}a^{9}-\frac{19\!\cdots\!80}{18\!\cdots\!33}a^{8}+\frac{33\!\cdots\!21}{73\!\cdots\!32}a^{7}+\frac{99\!\cdots\!63}{36\!\cdots\!66}a^{6}-\frac{96\!\cdots\!85}{36\!\cdots\!66}a^{5}+\frac{10\!\cdots\!69}{73\!\cdots\!32}a^{4}+\frac{98\!\cdots\!45}{36\!\cdots\!66}a^{3}-\frac{62\!\cdots\!25}{36\!\cdots\!66}a^{2}-\frac{29\!\cdots\!55}{36\!\cdots\!66}a+\frac{55\!\cdots\!19}{18\!\cdots\!33}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 276528967045 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{15}\cdot(2\pi)^{0}\cdot 276528967045 \cdot 1}{2\cdot\sqrt{7360671657636832731250000000000}}\cr\approx \mathstrut & 1.66994377036061 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^15 - 2*x^14 - 138*x^13 + 459*x^12 + 6294*x^11 - 29158*x^10 - 90469*x^9 + 640304*x^8 - 282922*x^7 - 3320427*x^6 + 5075634*x^5 + 1483772*x^4 - 5986612*x^3 + 1193096*x^2 + 1830056*x - 504860)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^15 - 2*x^14 - 138*x^13 + 459*x^12 + 6294*x^11 - 29158*x^10 - 90469*x^9 + 640304*x^8 - 282922*x^7 - 3320427*x^6 + 5075634*x^5 + 1483772*x^4 - 5986612*x^3 + 1193096*x^2 + 1830056*x - 504860, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^15 - 2*x^14 - 138*x^13 + 459*x^12 + 6294*x^11 - 29158*x^10 - 90469*x^9 + 640304*x^8 - 282922*x^7 - 3320427*x^6 + 5075634*x^5 + 1483772*x^4 - 5986612*x^3 + 1193096*x^2 + 1830056*x - 504860);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 2*x^14 - 138*x^13 + 459*x^12 + 6294*x^11 - 29158*x^10 - 90469*x^9 + 640304*x^8 - 282922*x^7 - 3320427*x^6 + 5075634*x^5 + 1483772*x^4 - 5986612*x^3 + 1193096*x^2 + 1830056*x - 504860);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_5^2:D_6$ (as 15T18):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 300
The 14 conjugacy class representatives for $((C_5^2 : C_3):C_2):C_2$
Character table for $((C_5^2 : C_3):C_2):C_2$

Intermediate fields

3.3.148.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 15 sibling: data not computed
Degree 25 sibling: data not computed
Degree 30 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{2}{,}\,{\href{/padicField/3.3.0.1}{3} }$ R ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.3.0.1}{3} }$ ${\href{/padicField/11.3.0.1}{3} }^{5}$ ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.2.0.1}{2} }^{7}{,}\,{\href{/padicField/17.1.0.1}{1} }$ R ${\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.2.0.1}{2} }^{5}{,}\,{\href{/padicField/29.1.0.1}{1} }^{5}$ ${\href{/padicField/31.2.0.1}{2} }^{5}{,}\,{\href{/padicField/31.1.0.1}{1} }^{5}$ R ${\href{/padicField/41.3.0.1}{3} }^{5}$ ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }$ ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.5.0.1}{5} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
\(5\) Copy content Toggle raw display $\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.10.12.10$x^{10} + 20 x^{7} - 200 x^{6} + 10 x^{5} + 100 x^{4} + 100 x^{2} + 25$$5$$2$$12$$D_{10}$$[3/2]_{2}^{2}$
\(19\) Copy content Toggle raw display 19.5.0.1$x^{5} + 5 x + 17$$1$$5$$0$$C_5$$[\ ]^{5}$
19.10.8.3$x^{10} - 5510 x^{5} - 1650131$$5$$2$$8$$D_5\times C_5$$[\ ]_{5}^{10}$
\(37\) Copy content Toggle raw display $\Q_{37}$$x + 35$$1$$1$$0$Trivial$[\ ]$
37.2.1.1$x^{2} + 37$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.0.1$x^{2} + 33 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.0.1$x^{2} + 33 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
37.4.2.1$x^{4} + 1916 x^{3} + 948367 x^{2} + 29317674 x + 2943243$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
37.4.2.1$x^{4} + 1916 x^{3} + 948367 x^{2} + 29317674 x + 2943243$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$