Normalized defining polynomial
\( x^{15} - x^{14} - 4452 x^{13} - 50296 x^{12} + 5784843 x^{11} + 91964349 x^{10} - 3060924423 x^{9} - 54750997444 x^{8} + 781942057449 x^{7} + 14664282257229 x^{6} - 102907697118067 x^{5} - 1901998615798914 x^{4} + 6977459265924253 x^{3} + 113854569421380357 x^{2} - 202156325407652112 x - 2402311520555338669 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(691985919132121715398802656928813567369454726910003125=3^{12}\cdot 5^{5}\cdot 79^{4}\cdot 401^{7}\cdot 50329^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3884.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 79, 401, 50329$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{13} a^{13} + \frac{3}{13} a^{12} + \frac{4}{13} a^{11} - \frac{2}{13} a^{10} - \frac{4}{13} a^{9} - \frac{3}{13} a^{8} - \frac{2}{13} a^{7} - \frac{2}{13} a^{6} + \frac{3}{13} a^{5} - \frac{3}{13} a^{4} - \frac{2}{13} a^{3} + \frac{2}{13} a^{2} + \frac{1}{13} a - \frac{2}{13}$, $\frac{1}{244615765644746150397084267039354503279840847889527934655247591389995011232412123000667514791047033751306281} a^{14} + \frac{1305817030947032281631062247714297725788307283052630708049630563413385044118977507133544899050900170467305}{244615765644746150397084267039354503279840847889527934655247591389995011232412123000667514791047033751306281} a^{13} - \frac{97326438573114727184593444306231380281233052443825837626814246940556829970026422050802323953007614664055719}{244615765644746150397084267039354503279840847889527934655247591389995011232412123000667514791047033751306281} a^{12} - \frac{46316798045210573458670657749208263728480188219715336306601370626762405887858804360873376553328961938346000}{244615765644746150397084267039354503279840847889527934655247591389995011232412123000667514791047033751306281} a^{11} + \frac{1316937548584560242424627455063432783130593407126656104845352711210871585761828410575041016584459191174993}{244615765644746150397084267039354503279840847889527934655247591389995011232412123000667514791047033751306281} a^{10} + \frac{114394093790680939013824031571713703049321137937661782786818430094948655177487335729855454763338083683171612}{244615765644746150397084267039354503279840847889527934655247591389995011232412123000667514791047033751306281} a^{9} - \frac{7386638000346716482719419977244087634696716295572033306902110164723413459157992027494835290572460704570872}{244615765644746150397084267039354503279840847889527934655247591389995011232412123000667514791047033751306281} a^{8} - \frac{101269878911345593782252626659329641017598857175519791186617559613526404257146068868091978660397240524160549}{244615765644746150397084267039354503279840847889527934655247591389995011232412123000667514791047033751306281} a^{7} - \frac{88465884176074308657672868991947587972337432038707362779952466231191907967031676844562551550362191004102602}{244615765644746150397084267039354503279840847889527934655247591389995011232412123000667514791047033751306281} a^{6} - \frac{2288265965415419157444211094383868291186376128198840261733270495355824339782557792637424255614943738807382}{6611236909317463524245520730793364953509212105122376612303988956486351654930057378396419318676946858143413} a^{5} - \frac{5838763057613039068927294111294566300019840399990700496037509398440935108772602648987339722086709523740853}{244615765644746150397084267039354503279840847889527934655247591389995011232412123000667514791047033751306281} a^{4} - \frac{8103509127262343196102964497883563578034813305874487479012070794589146671424081486913854309103928345653374}{244615765644746150397084267039354503279840847889527934655247591389995011232412123000667514791047033751306281} a^{3} + \frac{42617334900520123264993994771784246272970947522838139943620484969945928788012764874813784163257082064896708}{244615765644746150397084267039354503279840847889527934655247591389995011232412123000667514791047033751306281} a^{2} + \frac{74376092483605598211106466266898430635619767253258933671558056668266869115428845763805763506870064085790536}{244615765644746150397084267039354503279840847889527934655247591389995011232412123000667514791047033751306281} a + \frac{1320677758634341573527979248923303096382973829758464156987860929792975349613621714870137896052849914875374}{18816597357288165415160328233796500252295449837655994973480583953076539325570163307743654983926694903946637}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5820768023810000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1620 |
| The 24 conjugacy class representatives for [3^4:2]D(5) |
| Character table for [3^4:2]D(5) is not computed |
Intermediate fields
| 5.5.160801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.6.8.10 | $x^{6} + 6 x^{5} + 36$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $5$ | 5.5.0.1 | $x^{5} - x + 2$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $79$ | $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.6.4.2 | $x^{6} - 79 x^{3} + 18723$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 401 | Data not computed | ||||||
| 50329 | Data not computed | ||||||