Normalized defining polynomial
\( x^{15} - 2 x^{14} - 83 x^{13} + 81 x^{12} + 2678 x^{11} - 114 x^{10} - 41297 x^{9} - 30177 x^{8} + 301977 x^{7} + 409471 x^{6} - 861711 x^{5} - 1732412 x^{4} + 197478 x^{3} + 1652146 x^{2} + 508174 x - 184427 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(67826089355015287563327567529=11^{12}\cdot 43^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(473=11\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{473}(1,·)$, $\chi_{473}(130,·)$, $\chi_{473}(388,·)$, $\chi_{473}(135,·)$, $\chi_{473}(423,·)$, $\chi_{473}(302,·)$, $\chi_{473}(49,·)$, $\chi_{473}(466,·)$, $\chi_{473}(345,·)$, $\chi_{473}(122,·)$, $\chi_{473}(251,·)$, $\chi_{473}(92,·)$, $\chi_{473}(221,·)$, $\chi_{473}(350,·)$, $\chi_{473}(36,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{182039999163663817025241622054401014} a^{14} + \frac{16103067426895670584306395083981467}{182039999163663817025241622054401014} a^{13} + \frac{39867193590629629909561132447398231}{182039999163663817025241622054401014} a^{12} + \frac{36145035256042082985380648435209703}{182039999163663817025241622054401014} a^{11} - \frac{4575465149133827735530140193764019}{182039999163663817025241622054401014} a^{10} - \frac{77515625363228928923173526674569927}{182039999163663817025241622054401014} a^{9} + \frac{24394211956628699170148186989988096}{91019999581831908512620811027200507} a^{8} + \frac{79856362095725174570351292060745661}{182039999163663817025241622054401014} a^{7} - \frac{21253236947975429892757357417839631}{91019999581831908512620811027200507} a^{6} + \frac{24197943516542866557908156329064465}{91019999581831908512620811027200507} a^{5} + \frac{73847331728709608319148886745231873}{182039999163663817025241622054401014} a^{4} - \frac{20961756895948932983422252882809550}{91019999581831908512620811027200507} a^{3} - \frac{90580040984270457778029338341765335}{182039999163663817025241622054401014} a^{2} + \frac{31504997124801341491335582516535393}{182039999163663817025241622054401014} a - \frac{76069698703851065559864066348664585}{182039999163663817025241622054401014}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3066900946.178709 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.1849.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $43$ | 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |