Properties

Label 15.15.6776217118...6544.1
Degree $15$
Signature $[15, 0]$
Discriminant $2^{24}\cdot 11^{6}\cdot 79^{5}\cdot 104683^{2}\cdot 260023^{2}$
Root discriminant $835.73$
Ramified primes $2, 11, 79, 104683, 260023$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T74

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-93237184, -191547904, 161624224, 359066208, -42960640, -170037888, -2264344, 24643160, 1229790, -1436928, -83825, 35219, 1614, -352, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 7*x^14 - 352*x^13 + 1614*x^12 + 35219*x^11 - 83825*x^10 - 1436928*x^9 + 1229790*x^8 + 24643160*x^7 - 2264344*x^6 - 170037888*x^5 - 42960640*x^4 + 359066208*x^3 + 161624224*x^2 - 191547904*x - 93237184)
 
gp: K = bnfinit(x^15 - 7*x^14 - 352*x^13 + 1614*x^12 + 35219*x^11 - 83825*x^10 - 1436928*x^9 + 1229790*x^8 + 24643160*x^7 - 2264344*x^6 - 170037888*x^5 - 42960640*x^4 + 359066208*x^3 + 161624224*x^2 - 191547904*x - 93237184, 1)
 

Normalized defining polynomial

\( x^{15} - 7 x^{14} - 352 x^{13} + 1614 x^{12} + 35219 x^{11} - 83825 x^{10} - 1436928 x^{9} + 1229790 x^{8} + 24643160 x^{7} - 2264344 x^{6} - 170037888 x^{5} - 42960640 x^{4} + 359066208 x^{3} + 161624224 x^{2} - 191547904 x - 93237184 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(67762171181974663658421185602855739582316544=2^{24}\cdot 11^{6}\cdot 79^{5}\cdot 104683^{2}\cdot 260023^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $835.73$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 79, 104683, 260023$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{16} a^{8} + \frac{1}{16} a^{7} + \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} + \frac{1}{16} a^{9} + \frac{1}{16} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4591374177974516203792765809518012784399498730724768} a^{14} + \frac{80472427580144876499174803430985460608569507799393}{4591374177974516203792765809518012784399498730724768} a^{13} + \frac{21950092645916491703769840868799848668051294984465}{2295687088987258101896382904759006392199749365362384} a^{12} - \frac{9834167173976129637454895322366994566826489740781}{286960886123407262737047863094875799024968670670298} a^{11} + \frac{385850935424747921807370426255259953523733846512715}{4591374177974516203792765809518012784399498730724768} a^{10} + \frac{243195511639461901421550344553884198162447236687779}{4591374177974516203792765809518012784399498730724768} a^{9} - \frac{183830233372819539508771610751869082660470027412801}{2295687088987258101896382904759006392199749365362384} a^{8} + \frac{137099743092679739954684927210396455721505916951715}{1147843544493629050948191452379503196099874682681192} a^{7} + \frac{36291339606975773789700118295850330097602832358981}{286960886123407262737047863094875799024968670670298} a^{6} - \frac{100297816892716622960996337513164943764057687768859}{1147843544493629050948191452379503196099874682681192} a^{5} + \frac{58182677709768855121050677508760420522053598745117}{573921772246814525474095726189751598049937341340596} a^{4} + \frac{23450240375479916369829474651564794373206831982390}{143480443061703631368523931547437899512484335335149} a^{3} - \frac{16987560852036938857498338882885787728619805757299}{143480443061703631368523931547437899512484335335149} a^{2} + \frac{52901838816171452176719699814370660243225538205465}{143480443061703631368523931547437899512484335335149} a - \frac{61002345079148072991057795395225559662714765324300}{143480443061703631368523931547437899512484335335149}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 998111032340000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T74:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 24000
The 40 conjugacy class representatives for [1/2.F(5)^3]S(3)
Character table for [1/2.F(5)^3]S(3) is not computed

Intermediate fields

3.3.316.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 30 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $15$ $15$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ R ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ ${\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.4.4.2$x^{4} - x^{2} + 5$$2$$2$$4$$C_4$$[2]^{2}$
2.8.18.75$x^{8} + 24 x^{4} + 208$$8$$1$$18$$C_4\wr C_2$$[2, 2, 3]^{4}$
$11$$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.8.6.3$x^{8} - 11 x^{4} + 847$$4$$2$$6$$C_8:C_2$$[\ ]_{4}^{4}$
79Data not computed
104683Data not computed
260023Data not computed