Normalized defining polynomial
\( x^{15} - 5 x^{14} - 97 x^{13} + 473 x^{12} + 2481 x^{11} - 13381 x^{10} - 15393 x^{9} + 124473 x^{8} - 25813 x^{7} - 367383 x^{6} + 182005 x^{5} + 402515 x^{4} - 197917 x^{3} - 110047 x^{2} + 54733 x - 3877 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6644769363943959400399066678104064=2^{12}\cdot 7^{10}\cdot 13^{4}\cdot 83^{2}\cdot 293^{2}\cdot 18439^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $179.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13, 83, 293, 18439$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{5} - \frac{1}{4} a$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{8} a^{2} + \frac{1}{8}$, $\frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{16} a^{5} + \frac{1}{16} a^{4} - \frac{1}{16} a^{3} + \frac{1}{16} a^{2} - \frac{7}{16} a + \frac{7}{16}$, $\frac{1}{32} a^{8} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{3}{16} a^{2} - \frac{3}{8} a - \frac{5}{32}$, $\frac{1}{128} a^{9} + \frac{1}{128} a^{8} + \frac{1}{64} a^{7} + \frac{3}{64} a^{6} + \frac{3}{32} a^{5} + \frac{1}{16} a^{4} + \frac{11}{64} a^{3} - \frac{15}{64} a^{2} - \frac{37}{128} a + \frac{15}{128}$, $\frac{1}{256} a^{10} + \frac{1}{256} a^{8} + \frac{1}{64} a^{7} + \frac{3}{128} a^{6} + \frac{7}{64} a^{5} - \frac{9}{128} a^{4} - \frac{13}{64} a^{3} - \frac{7}{256} a^{2} + \frac{5}{64} a + \frac{17}{256}$, $\frac{1}{1024} a^{11} - \frac{1}{1024} a^{10} + \frac{1}{1024} a^{9} - \frac{13}{1024} a^{8} + \frac{1}{512} a^{7} - \frac{5}{512} a^{6} - \frac{23}{512} a^{5} + \frac{15}{512} a^{4} - \frac{83}{1024} a^{3} + \frac{59}{1024} a^{2} + \frac{381}{1024} a - \frac{321}{1024}$, $\frac{1}{2048} a^{12} + \frac{1}{512} a^{9} + \frac{5}{2048} a^{8} + \frac{3}{256} a^{7} + \frac{5}{256} a^{6} - \frac{5}{128} a^{5} - \frac{181}{2048} a^{4} - \frac{23}{256} a^{3} + \frac{59}{256} a^{2} + \frac{59}{512} a - \frac{337}{2048}$, $\frac{1}{4096} a^{13} - \frac{1}{4096} a^{12} + \frac{1}{1024} a^{10} + \frac{1}{4096} a^{9} + \frac{19}{4096} a^{8} + \frac{1}{256} a^{7} - \frac{15}{512} a^{6} - \frac{101}{4096} a^{5} - \frac{3}{4096} a^{4} - \frac{23}{256} a^{3} + \frac{197}{1024} a^{2} - \frac{1597}{4096} a + \frac{1361}{4096}$, $\frac{1}{6124476039725056} a^{14} + \frac{161539701643}{3062238019862528} a^{13} + \frac{1015687584865}{6124476039725056} a^{12} + \frac{430575834593}{1531119009931264} a^{11} + \frac{5931141082653}{6124476039725056} a^{10} + \frac{395949108441}{235556770758656} a^{9} + \frac{94132518842205}{6124476039725056} a^{8} - \frac{10877841989337}{765559504965632} a^{7} + \frac{205589010908947}{6124476039725056} a^{6} - \frac{182611587599307}{3062238019862528} a^{5} + \frac{132891919643123}{6124476039725056} a^{4} - \frac{116961664726575}{1531119009931264} a^{3} + \frac{755249521620111}{6124476039725056} a^{2} - \frac{57658088878789}{3062238019862528} a + \frac{2948815738374287}{6124476039725056}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2157836539700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3000 |
| The 32 conjugacy class representatives for [D(5)^3]3=D(5)wr3 |
| Character table for [D(5)^3]3=D(5)wr3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | $15$ | R | $15$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.5.0.1 | $x^{5} - 2 x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $83$ | $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 293 | Data not computed | ||||||
| 18439 | Data not computed | ||||||