Normalized defining polynomial
\( x^{15} - 7 x^{14} - 82 x^{13} + 698 x^{12} + 1347 x^{11} - 18828 x^{10} - 2454 x^{9} + 231590 x^{8} - 94753 x^{7} - 1492431 x^{6} + 759852 x^{5} + 5042048 x^{4} - 2072401 x^{3} - 7830362 x^{2} + 1839338 x + 3597987 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6642481855143226481920101489209=31^{6}\cdot 67^{2}\cdot 401^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $113.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 67, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{9} a^{13} - \frac{4}{9} a^{12} - \frac{2}{9} a^{10} + \frac{1}{9} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{4}{9} a^{5} - \frac{1}{3} a^{4} + \frac{2}{9} a^{3} - \frac{1}{9} a^{2} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{32039868413720681323054897844538333} a^{14} - \frac{284673720564487867632229971675214}{10679956137906893774351632614846111} a^{13} - \frac{14913950741436443947542227201459170}{32039868413720681323054897844538333} a^{12} + \frac{13745025906439816640083545376438705}{32039868413720681323054897844538333} a^{11} - \frac{4171040101896635339607574076863844}{32039868413720681323054897844538333} a^{10} + \frac{6110794124184672599396450333087764}{32039868413720681323054897844538333} a^{9} + \frac{6763760726510948508181091238555004}{32039868413720681323054897844538333} a^{8} + \frac{488123051073080926393868875705864}{10679956137906893774351632614846111} a^{7} + \frac{963347823515196862747755083255705}{2464605262593898563311915218810641} a^{6} - \frac{6091887295777869694500072569226187}{32039868413720681323054897844538333} a^{5} + \frac{16014376384648746640198413514331966}{32039868413720681323054897844538333} a^{4} - \frac{9148209851796286506555800095728056}{32039868413720681323054897844538333} a^{3} - \frac{141415100873327934493778212572509}{464345919039430164102244896297657} a^{2} + \frac{10732281250437673193103997735080292}{32039868413720681323054897844538333} a + \frac{2466708773620948963085135602395017}{10679956137906893774351632614846111}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 105180404251 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 38880 |
| The 45 conjugacy class representatives for 1/2[S(3)^5]D(5) |
| Character table for 1/2[S(3)^5]D(5) is not computed |
Intermediate fields
| 5.5.160801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 31 | Data not computed | ||||||
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.6.0.1 | $x^{6} + x^{2} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 401 | Data not computed | ||||||