Normalized defining polynomial
\( x^{15} - x^{14} - 305 x^{13} + 425 x^{12} + 30665 x^{11} - 43169 x^{10} - 1366411 x^{9} + 1967915 x^{8} + 28369855 x^{7} - 43933115 x^{6} - 241308801 x^{5} + 435539901 x^{4} + 416494315 x^{3} - 1297426135 x^{2} + 877767145 x - 178921805 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(64253246659742539130123427840000000000=2^{22}\cdot 3^{16}\cdot 5^{10}\cdot 7^{8}\cdot 43^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $331.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4}$, $\frac{1}{10} a^{10} + \frac{1}{10} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{11} - \frac{1}{10} a^{9} - \frac{1}{5} a^{6} + \frac{1}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{100} a^{12} - \frac{1}{50} a^{10} - \frac{1}{25} a^{9} + \frac{7}{20} a^{8} - \frac{8}{25} a^{7} + \frac{3}{10} a^{6} + \frac{1}{25} a^{5} + \frac{13}{100} a^{4} + \frac{2}{5} a^{3} - \frac{1}{2} a^{2} - \frac{3}{20}$, $\frac{1}{100} a^{13} - \frac{1}{50} a^{11} - \frac{1}{25} a^{10} - \frac{1}{20} a^{9} + \frac{7}{25} a^{8} - \frac{1}{2} a^{7} + \frac{11}{25} a^{6} - \frac{7}{100} a^{5} - \frac{1}{5} a^{4} - \frac{1}{2} a^{3} - \frac{3}{20} a$, $\frac{1}{2313532666730984881468635147922826249362485830275000} a^{14} + \frac{3345959599992584832168907549404782036595469641983}{1156766333365492440734317573961413124681242915137500} a^{13} - \frac{5194941378084241457039680847498503251309744725683}{2313532666730984881468635147922826249362485830275000} a^{12} + \frac{13540602841077569127421169598529319029471742061308}{289191583341373110183579393490353281170310728784375} a^{11} + \frac{46314240256529121341787575509443313740372110060853}{2313532666730984881468635147922826249362485830275000} a^{10} + \frac{22396855618553952496163873644676309548927510316591}{1156766333365492440734317573961413124681242915137500} a^{9} - \frac{478737219351595029860030877606252060578904781601417}{2313532666730984881468635147922826249362485830275000} a^{8} + \frac{133834832648696887846941561668068423918721812983419}{578383166682746220367158786980706562340621457568750} a^{7} + \frac{339339009570556954107824044487386823734080628623547}{2313532666730984881468635147922826249362485830275000} a^{6} - \frac{352917363345472821074199904905342177920910276790583}{1156766333365492440734317573961413124681242915137500} a^{5} - \frac{170203326368119825803319012514375865704956664556823}{2313532666730984881468635147922826249362485830275000} a^{4} - \frac{9573311922442933381918047481017130349806866067461}{57838316668274622036715878698070656234062145756875} a^{3} + \frac{134226389192702942600276728898052985801578502330067}{462706533346196976293727029584565249872497166055000} a^{2} + \frac{45018194897334955620738490199042899409752152406531}{231353266673098488146863514792282624936248583027500} a + \frac{211101810066808667896012759423280342225185587433383}{462706533346196976293727029584565249872497166055000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1284426000550000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 77760 |
| The 39 conjugacy class representatives for 1/2[S(3)^5]F(5) |
| Character table for 1/2[S(3)^5]F(5) is not computed |
Intermediate fields
| 5.5.3698000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | $15$ | $15$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | $15$ | R | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.18.9 | $x^{10} - 2 x^{9} - 6 x^{8} - 6$ | $10$ | $1$ | $18$ | $(C_2^4 : C_5):C_4$ | $[14/5, 14/5, 14/5, 14/5]_{5}^{4}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.12.16.6 | $x^{12} + 120 x^{11} - 117 x^{10} - 57 x^{9} + 36 x^{8} + 54 x^{7} - 18 x^{6} + 81 x^{5} + 81$ | $3$ | $4$ | $16$ | 12T46 | $[2, 2]^{8}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |