Normalized defining polynomial
\( x^{15} - 2 x^{14} - 59 x^{13} + 150 x^{12} + 1100 x^{11} - 3368 x^{10} - 7356 x^{9} + 29167 x^{8} + 10106 x^{7} - 98196 x^{6} + 44261 x^{5} + 92292 x^{4} - 57764 x^{3} - 27115 x^{2} + 17047 x + 547 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6373627540905023204410809169=7^{10}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(287=7\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{287}(256,·)$, $\chi_{287}(1,·)$, $\chi_{287}(18,·)$, $\chi_{287}(100,·)$, $\chi_{287}(37,·)$, $\chi_{287}(141,·)$, $\chi_{287}(78,·)$, $\chi_{287}(16,·)$, $\chi_{287}(242,·)$, $\chi_{287}(51,·)$, $\chi_{287}(247,·)$, $\chi_{287}(57,·)$, $\chi_{287}(92,·)$, $\chi_{287}(221,·)$, $\chi_{287}(165,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{3} a^{7} - \frac{2}{9} a^{6} + \frac{2}{9} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{9}$, $\frac{1}{747} a^{13} - \frac{13}{747} a^{12} + \frac{59}{747} a^{11} - \frac{91}{747} a^{10} + \frac{5}{83} a^{9} - \frac{59}{249} a^{8} + \frac{106}{747} a^{7} + \frac{305}{747} a^{6} - \frac{44}{249} a^{5} + \frac{5}{83} a^{4} - \frac{109}{249} a^{3} - \frac{118}{249} a^{2} + \frac{370}{747} a + \frac{36}{83}$, $\frac{1}{196844169779395513799373} a^{14} - \frac{82421716258735761455}{196844169779395513799373} a^{13} + \frac{8642779212866528606392}{196844169779395513799373} a^{12} - \frac{30954461635109389728595}{196844169779395513799373} a^{11} + \frac{2202572987140352097355}{21871574419932834866597} a^{10} - \frac{31102841920537390883827}{196844169779395513799373} a^{9} + \frac{91895393203835695678642}{196844169779395513799373} a^{8} - \frac{96882774218170367244722}{196844169779395513799373} a^{7} + \frac{17128848708806409345890}{196844169779395513799373} a^{6} + \frac{21580896147683521189526}{196844169779395513799373} a^{5} - \frac{340557134634558280306}{65614723259798504599791} a^{4} + \frac{5547690257249055617021}{21871574419932834866597} a^{3} + \frac{18137007720882433334896}{196844169779395513799373} a^{2} - \frac{64418494976667915180943}{196844169779395513799373} a - \frac{64116065030109393896588}{196844169779395513799373}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 873491470.835 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 5.5.2825761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{5}$ | $15$ | R | $15$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | $15$ | $15$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $41$ | 41.5.4.1 | $x^{5} - 41$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 41.5.4.1 | $x^{5} - 41$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 41.5.4.1 | $x^{5} - 41$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |