Normalized defining polynomial
\( x^{15} - 4 x^{14} - 186 x^{13} + 438 x^{12} + 12766 x^{11} - 13709 x^{10} - 391193 x^{9} + 100840 x^{8} + 5468724 x^{7} + 731596 x^{6} - 35856634 x^{5} - 10209282 x^{4} + 105247589 x^{3} + 30695428 x^{2} - 107138692 x - 21039807 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61170892447385797247321113311726286561=193^{2}\cdot 89417^{4}\cdot 5068447^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $330.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $193, 89417, 5068447$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{25} a^{13} - \frac{1}{25} a^{12} - \frac{2}{5} a^{11} + \frac{4}{25} a^{10} - \frac{12}{25} a^{9} - \frac{4}{25} a^{8} - \frac{3}{25} a^{7} - \frac{2}{5} a^{6} + \frac{7}{25} a^{5} + \frac{2}{25} a^{4} + \frac{1}{25} a^{2} - \frac{8}{25} a + \frac{8}{25}$, $\frac{1}{1082103447742775892067492242798723356217914122625} a^{14} + \frac{593474016545591530432603846031886245970857728}{43284137909711035682699689711948934248716564905} a^{13} - \frac{27448054592937759819450953444193729099939557186}{1082103447742775892067492242798723356217914122625} a^{12} + \frac{370584858866103009357742320775404112867842649669}{1082103447742775892067492242798723356217914122625} a^{11} + \frac{314488602733335190652154846087054673414888479992}{1082103447742775892067492242798723356217914122625} a^{10} - \frac{406519631908030904982896364310311027222081015791}{1082103447742775892067492242798723356217914122625} a^{9} + \frac{2869014670223759298047855226985088169022532293}{1082103447742775892067492242798723356217914122625} a^{8} + \frac{276229520039809659975229606820042296503524651312}{1082103447742775892067492242798723356217914122625} a^{7} + \frac{61285324272216242216702875852172752150526400772}{1082103447742775892067492242798723356217914122625} a^{6} + \frac{143384104955984482692042235806919237782040104209}{1082103447742775892067492242798723356217914122625} a^{5} + \frac{104312204466393929760061310394054617515860306652}{1082103447742775892067492242798723356217914122625} a^{4} - \frac{306346529310069442823471127459619648430186851999}{1082103447742775892067492242798723356217914122625} a^{3} - \frac{204724050272881626148898580094075756715851444957}{1082103447742775892067492242798723356217914122625} a^{2} + \frac{7252509952762224421044306080379529742390209856}{43284137909711035682699689711948934248716564905} a - \frac{272960364578721969243685912407462125773372871317}{1082103447742775892067492242798723356217914122625}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 121855598236000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 466560 |
| The 60 conjugacy class representatives for 1/2[S(3)^5]S(5) are not computed |
| Character table for 1/2[S(3)^5]S(5) is not computed |
Intermediate fields
| 5.5.89417.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $15$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 193 | Data not computed | ||||||
| 89417 | Data not computed | ||||||
| 5068447 | Data not computed | ||||||