Normalized defining polynomial
\( x^{15} - 204 x^{13} - 84 x^{12} + 16047 x^{11} + 10104 x^{10} - 624766 x^{9} - 441828 x^{8} + 12590520 x^{7} + 8195912 x^{6} - 121663908 x^{5} - 51121392 x^{4} + 419212416 x^{3} - 56685888 x^{2} - 57125376 x + 3863552 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5902598614225707628542494671273721856=2^{26}\cdot 3^{20}\cdot 7^{2}\cdot 11^{4}\cdot 181^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $282.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{4} a^{9} - \frac{1}{16} a^{8} + \frac{3}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{2}$, $\frac{1}{448} a^{13} + \frac{5}{112} a^{11} + \frac{1}{16} a^{10} - \frac{81}{448} a^{9} + \frac{3}{56} a^{8} - \frac{15}{224} a^{7} - \frac{53}{112} a^{6} - \frac{9}{56} a^{5} + \frac{25}{56} a^{4} - \frac{25}{112} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{44494801444959969575398418327988024553069312} a^{14} - \frac{295589014112998999109377552650297451239}{1589100051605713199121372083142429448323904} a^{13} - \frac{295277143486051642672875652167497871798079}{11123700361239992393849604581997006138267328} a^{12} + \frac{95671959586842847958837770842458078180417}{1589100051605713199121372083142429448323904} a^{11} - \frac{3006673626183480624974374361526191186150209}{44494801444959969575398418327988024553069312} a^{10} + \frac{1841499087425067688621643039486545055857455}{11123700361239992393849604581997006138267328} a^{9} - \frac{2383433331936304976044857109271486779622679}{22247400722479984787699209163994012276534656} a^{8} + \frac{35270598238104847404364112188632189195487}{1011245487385453853986327689272455103478848} a^{7} + \frac{2101180072852940899293885627681308741236813}{5561850180619996196924802290998503069133664} a^{6} + \frac{236462298414395307450599855462397254759039}{505622743692726926993163844636227551739424} a^{5} - \frac{4058692888574145459693037394245824700017361}{11123700361239992393849604581997006138267328} a^{4} + \frac{3693681910872671135343672348215946871557}{28376786635816307127167358627543383005784} a^{3} - \frac{6683004965733610563033973335491378641191}{24829688306339268736271438799100460130061} a^{2} + \frac{1801962759928380882735010939700667469723}{9028977565941552267735068654218349138204} a - \frac{41786875882806023294317676817693109729}{322463484497912580990538166222083897793}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 609960897416000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 466560 |
| The 60 conjugacy class representatives for 1/2[S(3)^5]S(5) are not computed |
| Character table for 1/2[S(3)^5]S(5) is not computed |
Intermediate fields
| 5.5.11531872.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | R | $15$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.4.10.8 | $x^{4} + 2 x^{2} + 3$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.6.11.4 | $x^{6} + 6 x^{4} + 4 x^{2} + 4 x + 14$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $181$ | 181.3.2.3 | $x^{3} - 724$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 181.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 181.6.4.3 | $x^{6} + 6335 x^{3} + 10614564$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |