Normalized defining polynomial
\( x^{15} - 3 x^{14} - 96 x^{13} + 90 x^{12} + 3387 x^{11} + 2367 x^{10} - 48026 x^{9} - 90183 x^{8} + 200511 x^{7} + 624775 x^{6} + 87771 x^{5} - 1101825 x^{4} - 1198347 x^{3} - 414456 x^{2} - 17184 x + 8621 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(57217025805425309006858635774641=3^{20}\cdot 71^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $130.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(639=3^{2}\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{639}(1,·)$, $\chi_{639}(451,·)$, $\chi_{639}(196,·)$, $\chi_{639}(214,·)$, $\chi_{639}(199,·)$, $\chi_{639}(427,·)$, $\chi_{639}(76,·)$, $\chi_{639}(289,·)$, $\chi_{639}(622,·)$, $\chi_{639}(625,·)$, $\chi_{639}(238,·)$, $\chi_{639}(502,·)$, $\chi_{639}(409,·)$, $\chi_{639}(25,·)$, $\chi_{639}(412,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{37} a^{11} + \frac{8}{37} a^{10} - \frac{11}{37} a^{9} - \frac{2}{37} a^{8} + \frac{5}{37} a^{7} - \frac{16}{37} a^{6} - \frac{9}{37} a^{5} - \frac{10}{37} a^{4} + \frac{9}{37} a^{3} - \frac{15}{37} a$, $\frac{1}{851} a^{12} - \frac{2}{851} a^{11} + \frac{242}{851} a^{10} + \frac{256}{851} a^{9} - \frac{86}{851} a^{8} - \frac{399}{851} a^{7} - \frac{367}{851} a^{6} + \frac{376}{851} a^{5} - \frac{2}{851} a^{4} + \frac{243}{851} a^{3} + \frac{281}{851} a^{2} - \frac{220}{851} a + \frac{11}{23}$, $\frac{1}{31487} a^{13} + \frac{14}{31487} a^{12} + \frac{49}{31487} a^{11} + \frac{6244}{31487} a^{10} - \frac{14643}{31487} a^{9} - \frac{12516}{31487} a^{8} - \frac{748}{31487} a^{7} + \frac{11547}{31487} a^{6} - \frac{196}{31487} a^{5} + \frac{15437}{31487} a^{4} + \frac{6124}{31487} a^{3} + \frac{2574}{31487} a^{2} - \frac{1549}{31487} a - \frac{422}{851}$, $\frac{1}{21090257424948843289102541} a^{14} + \frac{20830916630868465049}{21090257424948843289102541} a^{13} - \frac{10442178626567078766976}{21090257424948843289102541} a^{12} - \frac{34272685903801701072657}{21090257424948843289102541} a^{11} + \frac{1476617342197588494718810}{21090257424948843289102541} a^{10} - \frac{5558747935039766824979279}{21090257424948843289102541} a^{9} - \frac{1474146959994119417661836}{21090257424948843289102541} a^{8} - \frac{310126491337335212303726}{21090257424948843289102541} a^{7} - \frac{6471220492686949910617315}{21090257424948843289102541} a^{6} + \frac{194128873173831865234938}{916967714128210577787067} a^{5} - \frac{1870692539447552370757051}{21090257424948843289102541} a^{4} + \frac{5267604599517193427046059}{21090257424948843289102541} a^{3} + \frac{141901536320789334408579}{916967714128210577787067} a^{2} - \frac{2876347458460177147245409}{21090257424948843289102541} a - \frac{257829004931613475726492}{570006957431049818624393}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94930923317.51544 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 5.5.25411681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | R | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | $15$ | $15$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}$ | $15$ | $15$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.15.20.65 | $x^{15} + 78 x^{14} + 39 x^{13} + 49 x^{12} + 24 x^{11} + 36 x^{10} + 2 x^{9} + 54 x^{8} + 69 x^{7} + 47 x^{6} + 18 x^{5} + 15 x^{4} + 36 x^{3} + 36 x^{2} + 63 x + 73$ | $3$ | $5$ | $20$ | $C_{15}$ | $[2]^{5}$ |
| $71$ | 71.5.4.1 | $x^{5} - 71$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 71.5.4.1 | $x^{5} - 71$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 71.5.4.1 | $x^{5} - 71$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |