Normalized defining polynomial
\( x^{15} - 2 x^{14} - 123 x^{13} + 152 x^{12} + 5870 x^{11} - 2956 x^{10} - 136528 x^{9} - 22067 x^{8} + 1590440 x^{7} + 1155822 x^{6} - 8394345 x^{5} - 9635844 x^{4} + 13947752 x^{3} + 17818309 x^{2} - 4647121 x - 4845499 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5720845891965056149406296828729=11^{12}\cdot 67^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(737=11\cdot 67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{737}(1,·)$, $\chi_{737}(707,·)$, $\chi_{737}(37,·)$, $\chi_{737}(135,·)$, $\chi_{737}(104,·)$, $\chi_{737}(202,·)$, $\chi_{737}(364,·)$, $\chi_{737}(269,·)$, $\chi_{737}(498,·)$, $\chi_{737}(163,·)$, $\chi_{737}(372,·)$, $\chi_{737}(565,·)$, $\chi_{737}(632,·)$, $\chi_{737}(537,·)$, $\chi_{737}(573,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{11481} a^{13} - \frac{1558}{11481} a^{12} + \frac{502}{3827} a^{11} - \frac{640}{11481} a^{10} + \frac{1445}{11481} a^{9} + \frac{4280}{11481} a^{8} - \frac{4547}{11481} a^{7} - \frac{4502}{11481} a^{6} - \frac{1135}{3827} a^{5} + \frac{59}{11481} a^{4} + \frac{1699}{11481} a^{3} - \frac{790}{3827} a^{2} + \frac{441}{3827} a + \frac{1663}{3827}$, $\frac{1}{8333731061413040248364743841825934698067} a^{14} - \frac{26103286598070213814154026457916796}{8333731061413040248364743841825934698067} a^{13} - \frac{792834257909521093277345351796739563461}{8333731061413040248364743841825934698067} a^{12} - \frac{1357683583125600017977117996432911508355}{8333731061413040248364743841825934698067} a^{11} - \frac{1348127339036785098316046296647752975498}{8333731061413040248364743841825934698067} a^{10} + \frac{1305033336423274730990903293613008361363}{8333731061413040248364743841825934698067} a^{9} - \frac{1216358989801822267971045651528573472001}{2777910353804346749454914613941978232689} a^{8} - \frac{4062136448903759168495018174253458398664}{8333731061413040248364743841825934698067} a^{7} + \frac{3062493060017725701116768598009485655809}{8333731061413040248364743841825934698067} a^{6} - \frac{1473969502603099741674112744708737302675}{8333731061413040248364743841825934698067} a^{5} + \frac{940100341252318561146990441258388599363}{2777910353804346749454914613941978232689} a^{4} - \frac{175684087278837301571142458801655198698}{8333731061413040248364743841825934698067} a^{3} + \frac{3293913221866384364028349875457779384058}{8333731061413040248364743841825934698067} a^{2} + \frac{227685281704555796779774206329849459695}{8333731061413040248364743841825934698067} a + \frac{868649342749065498555478159700845295417}{8333731061413040248364743841825934698067}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35980252831.5571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.4489.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | $15$ | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{15}$ | $15$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.15.12.1 | $x^{15} + 165 x^{10} + 5324 x^{5} + 323433$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |
| $67$ | 67.3.2.1 | $x^{3} - 67$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 67.3.2.1 | $x^{3} - 67$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 67.3.2.1 | $x^{3} - 67$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 67.3.2.1 | $x^{3} - 67$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 67.3.2.1 | $x^{3} - 67$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |