Normalized defining polynomial
\( x^{15} - x^{14} - 164 x^{13} - 223 x^{12} + 10346 x^{11} + 35689 x^{10} - 269960 x^{9} - 1615725 x^{8} + 1235925 x^{7} + 27572625 x^{6} + 56075375 x^{5} - 96115625 x^{4} - 605233125 x^{3} - 1103753125 x^{2} - 937128125 x - 315628125 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(566852702762309292388072502432118253125=3^{8}\cdot 5^{5}\cdot 19^{2}\cdot 401^{6}\cdot 769^{2}\cdot 5581^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $383.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19, 401, 769, 5581$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{25} a^{8} - \frac{1}{25} a^{7} - \frac{9}{25} a^{6} - \frac{3}{25} a^{5} + \frac{1}{25} a^{4} - \frac{1}{25} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{125} a^{9} - \frac{1}{125} a^{8} - \frac{4}{125} a^{7} - \frac{8}{125} a^{6} + \frac{6}{125} a^{5} - \frac{16}{125} a^{4} + \frac{2}{5} a^{3} - \frac{12}{25} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{125} a^{10} + \frac{8}{125} a^{7} + \frac{53}{125} a^{6} - \frac{36}{125} a^{4} + \frac{2}{25} a^{3} - \frac{2}{25} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{625} a^{11} - \frac{1}{625} a^{10} + \frac{1}{625} a^{9} + \frac{12}{625} a^{8} - \frac{39}{625} a^{7} + \frac{94}{625} a^{6} + \frac{26}{125} a^{5} - \frac{23}{125} a^{4} + \frac{8}{25} a^{3} + \frac{12}{25} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{9375} a^{12} - \frac{1}{9375} a^{11} + \frac{1}{9375} a^{10} + \frac{37}{9375} a^{9} + \frac{62}{3125} a^{8} - \frac{252}{3125} a^{7} + \frac{87}{625} a^{6} - \frac{206}{625} a^{5} - \frac{21}{125} a^{4} - \frac{6}{125} a^{3} - \frac{4}{15} a^{2} - \frac{16}{75} a + \frac{1}{5}$, $\frac{1}{46875} a^{13} - \frac{1}{46875} a^{12} + \frac{31}{46875} a^{11} + \frac{82}{46875} a^{10} + \frac{47}{15625} a^{9} + \frac{143}{15625} a^{8} - \frac{231}{3125} a^{7} - \frac{538}{3125} a^{6} - \frac{36}{125} a^{5} - \frac{37}{625} a^{4} - \frac{32}{375} a^{3} - \frac{139}{375} a^{2} - \frac{7}{25} a - \frac{12}{25}$, $\frac{1}{46875} a^{14} - \frac{7}{46875} a^{11} - \frac{32}{46875} a^{10} + \frac{4}{3125} a^{9} + \frac{28}{15625} a^{8} - \frac{17}{3125} a^{7} - \frac{963}{3125} a^{6} - \frac{256}{625} a^{5} - \frac{931}{1875} a^{4} - \frac{41}{125} a^{3} - \frac{34}{375} a^{2} + \frac{8}{25} a - \frac{12}{25}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 184788226014000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4860 |
| The 48 conjugacy class representatives for [3^5:2]D(5) |
| Character table for [3^5:2]D(5) is not computed |
Intermediate fields
| 5.5.160801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.6.8.4 | $x^{6} + 18 x^{2} + 63$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $5$ | 5.5.0.1 | $x^{5} - x + 2$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 401 | Data not computed | ||||||
| 769 | Data not computed | ||||||
| 5581 | Data not computed | ||||||