Properties

Label 15.15.5386692248...3296.1
Degree $15$
Signature $[15, 0]$
Discriminant $2^{12}\cdot 71^{6}\cdot 179^{4}$
Root discriminant $38.20$
Ramified primes $2, 71, 179$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T28

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![46, 40, -420, -184, 1354, 137, -2017, 309, 1422, -463, -437, 193, 48, -27, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - x^14 - 27*x^13 + 48*x^12 + 193*x^11 - 437*x^10 - 463*x^9 + 1422*x^8 + 309*x^7 - 2017*x^6 + 137*x^5 + 1354*x^4 - 184*x^3 - 420*x^2 + 40*x + 46)
 
gp: K = bnfinit(x^15 - x^14 - 27*x^13 + 48*x^12 + 193*x^11 - 437*x^10 - 463*x^9 + 1422*x^8 + 309*x^7 - 2017*x^6 + 137*x^5 + 1354*x^4 - 184*x^3 - 420*x^2 + 40*x + 46, 1)
 

Normalized defining polynomial

\( x^{15} - x^{14} - 27 x^{13} + 48 x^{12} + 193 x^{11} - 437 x^{10} - 463 x^{9} + 1422 x^{8} + 309 x^{7} - 2017 x^{6} + 137 x^{5} + 1354 x^{4} - 184 x^{3} - 420 x^{2} + 40 x + 46 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(538669224823562138423296=2^{12}\cdot 71^{6}\cdot 179^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $38.20$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 71, 179$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{395842546} a^{14} - \frac{18383078}{197921273} a^{13} - \frac{25522524}{197921273} a^{12} + \frac{62303523}{395842546} a^{11} - \frac{65078082}{197921273} a^{10} + \frac{85814309}{197921273} a^{9} + \frac{70591563}{395842546} a^{8} - \frac{49725804}{197921273} a^{7} + \frac{10723918}{197921273} a^{6} - \frac{89488911}{395842546} a^{5} - \frac{54775183}{197921273} a^{4} - \frac{32916991}{197921273} a^{3} + \frac{6013683}{197921273} a^{2} + \frac{29903228}{197921273} a + \frac{28179917}{197921273}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 24676628.3147 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T28:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 720
The 11 conjugacy class representatives for S_6(15)
Character table for S_6(15)

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 6 siblings: data not computed
Degree 10 sibling: data not computed
Degree 12 siblings: data not computed
Degree 15 sibling: data not computed
Degree 20 siblings: data not computed
Degree 30 siblings: data not computed
Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}$ ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.5.4.1$x^{5} - 2$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
2.10.8.1$x^{10} - 2 x^{5} + 4$$5$$2$$8$$F_5$$[\ ]_{5}^{4}$
$71$$\Q_{71}$$x + 2$$1$$1$$0$Trivial$[\ ]$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.4.2.2$x^{4} - 71 x^{2} + 55451$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
71.8.4.1$x^{8} + 110902 x^{4} - 357911 x^{2} + 3074813401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$179$$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
179.2.1.2$x^{2} + 537$$2$$1$$1$$C_2$$[\ ]_{2}$
179.3.0.1$x^{3} - x + 5$$1$$3$$0$$C_3$$[\ ]^{3}$
179.3.0.1$x^{3} - x + 5$$1$$3$$0$$C_3$$[\ ]^{3}$
179.6.3.2$x^{6} - 32041 x^{2} + 28676695$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$