Normalized defining polynomial
\( x^{15} - 105 x^{13} - 130 x^{12} + 2970 x^{11} + 5205 x^{10} - 26825 x^{9} - 61830 x^{8} + 68865 x^{7} + 248430 x^{6} + 42651 x^{5} - 320355 x^{4} - 256025 x^{3} + 51450 x + 12005 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(498996338057577610015869140625=3^{20}\cdot 5^{24}\cdot 7^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{14} a^{10} + \frac{3}{7} a^{9} + \frac{1}{14} a^{8} - \frac{5}{14} a^{7} - \frac{3}{14} a^{5} + \frac{1}{7} a^{4} - \frac{1}{14} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{14} a^{11} - \frac{1}{2} a^{9} + \frac{3}{14} a^{8} + \frac{1}{7} a^{7} - \frac{3}{14} a^{6} + \frac{3}{7} a^{5} + \frac{1}{14} a^{4} - \frac{1}{14} a^{3} - \frac{1}{2} a$, $\frac{1}{14} a^{12} + \frac{3}{14} a^{9} - \frac{5}{14} a^{8} + \frac{2}{7} a^{7} + \frac{3}{7} a^{6} - \frac{3}{7} a^{5} - \frac{1}{14} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{490} a^{13} + \frac{1}{35} a^{12} + \frac{1}{70} a^{11} + \frac{17}{490} a^{10} + \frac{17}{49} a^{9} - \frac{213}{490} a^{8} - \frac{116}{245} a^{7} + \frac{99}{490} a^{6} + \frac{69}{490} a^{5} + \frac{3}{14} a^{3} - \frac{2}{7} a^{2}$, $\frac{1}{87199929311813228237502070} a^{14} + \frac{132726156336038562263}{1245713275883046117678601} a^{13} + \frac{61875385594783228750474}{6228566379415230588393005} a^{12} - \frac{1402964786114667350891761}{87199929311813228237502070} a^{11} + \frac{783097926330975734135407}{87199929311813228237502070} a^{10} + \frac{8456641350307397986478126}{43599964655906614118751035} a^{9} - \frac{2860261071807225505475740}{8719992931181322823750207} a^{8} + \frac{10764201475873875936046571}{43599964655906614118751035} a^{7} - \frac{8649509378198959404235977}{87199929311813228237502070} a^{6} - \frac{6088766225031545530125773}{12457132758830461176786010} a^{5} + \frac{270783839351660823595093}{1245713275883046117678601} a^{4} + \frac{611277269838327764093357}{1245713275883046117678601} a^{3} - \frac{3208774020070372776793}{50845439831961066027698} a^{2} - \frac{9521834307950969923095}{25422719915980533013849} a - \frac{546234192211025885876}{25422719915980533013849}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 45364940873.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^4:C_5$ (as 15T26):
| A solvable group of order 405 |
| The 21 conjugacy class representatives for $C_3^4:C_5$ |
| Character table for $C_3^4:C_5$ is not computed |
Intermediate fields
| 5.5.390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | R | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |