Normalized defining polynomial
\( x^{15} - 5 x^{14} - 70 x^{13} + 345 x^{12} + 1605 x^{11} - 8259 x^{10} - 13835 x^{9} + 83055 x^{8} + 32860 x^{7} - 361145 x^{6} + 102680 x^{5} + 603860 x^{4} - 414630 x^{3} - 202555 x^{2} + 206735 x - 28349 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(48853652893352568149566650390625=5^{24}\cdot 31^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $129.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(775=5^{2}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{775}(1,·)$, $\chi_{775}(676,·)$, $\chi_{775}(521,·)$, $\chi_{775}(621,·)$, $\chi_{775}(366,·)$, $\chi_{775}(656,·)$, $\chi_{775}(466,·)$, $\chi_{775}(211,·)$, $\chi_{775}(501,·)$, $\chi_{775}(311,·)$, $\chi_{775}(56,·)$, $\chi_{775}(36,·)$, $\chi_{775}(346,·)$, $\chi_{775}(156,·)$, $\chi_{775}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{14} a^{12} + \frac{1}{14} a^{11} + \frac{1}{7} a^{10} - \frac{1}{7} a^{8} + \frac{2}{7} a^{7} - \frac{3}{7} a^{6} + \frac{3}{14} a^{5} + \frac{2}{7} a^{4} + \frac{1}{14} a^{3} - \frac{1}{14} a^{2} + \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{14} a^{13} + \frac{1}{14} a^{11} - \frac{1}{7} a^{10} - \frac{1}{7} a^{9} + \frac{3}{7} a^{8} + \frac{2}{7} a^{7} - \frac{5}{14} a^{6} + \frac{1}{14} a^{5} - \frac{3}{14} a^{4} - \frac{1}{7} a^{3} + \frac{5}{14} a^{2} - \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{1485863211819566863728091344614} a^{14} + \frac{49609664320574944028307439593}{1485863211819566863728091344614} a^{13} + \frac{51198644414192397406764381967}{1485863211819566863728091344614} a^{12} - \frac{246834979581279389276610902223}{1485863211819566863728091344614} a^{11} + \frac{79477534600456895367895087066}{742931605909783431864045672307} a^{10} + \frac{341348779454803028099599871770}{742931605909783431864045672307} a^{9} + \frac{322034571683834250718062805106}{742931605909783431864045672307} a^{8} - \frac{312528950697909874719869028229}{1485863211819566863728091344614} a^{7} + \frac{156076642890301745476540834464}{742931605909783431864045672307} a^{6} + \frac{93167147680646350454761932281}{742931605909783431864045672307} a^{5} - \frac{48948642113642547244148478637}{1485863211819566863728091344614} a^{4} - \frac{308347078617970000224165359147}{1485863211819566863728091344614} a^{3} + \frac{406867521951914415063602174495}{1485863211819566863728091344614} a^{2} + \frac{20985019381106921138672476717}{742931605909783431864045672307} a + \frac{44236216469176298685256737777}{742931605909783431864045672307}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73815924361.4963 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.961.1, 5.5.390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | $15$ | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{5}$ | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | R | $15$ | $15$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.15.24.88 | $x^{15} + 375 x^{14} + 415 x^{13} + 575 x^{12} + 520 x^{11} + 378 x^{10} + 145 x^{9} + 275 x^{8} + 85 x^{7} + 545 x^{6} + 127 x^{5} + 380 x^{4} + 470 x^{3} + 615 x + 368$ | $5$ | $3$ | $24$ | $C_{15}$ | $[2]^{3}$ |
| $31$ | 31.15.10.1 | $x^{15} + 893730 x^{6} - 923521 x^{3} + 28629151000$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |