Normalized defining polynomial
\( x^{15} - 110 x^{13} - 5 x^{12} + 3825 x^{11} - 894 x^{10} - 54550 x^{9} + 28465 x^{8} + 350165 x^{7} - 261960 x^{6} - 994230 x^{5} + 947100 x^{4} + 1004295 x^{3} - 1183260 x^{2} - 36900 x + 189461 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(47576877003281652927398681640625=5^{24}\cdot 7^{10}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $129.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1137537236432197500181260734250094396427} a^{14} - \frac{136478090496906117208679213859044670534}{1137537236432197500181260734250094396427} a^{13} - \frac{127821408401362140474603233840893266056}{1137537236432197500181260734250094396427} a^{12} - \frac{291222876718568405534737951232202248596}{1137537236432197500181260734250094396427} a^{11} + \frac{330558612517473929008914981840652334175}{1137537236432197500181260734250094396427} a^{10} - \frac{2297380589586175097051893598352095136}{16021651217354894368750151186621047837} a^{9} + \frac{71610530039082722604409911573027634221}{1137537236432197500181260734250094396427} a^{8} + \frac{146389061143240616042929971884691489803}{1137537236432197500181260734250094396427} a^{7} + \frac{202504009107678184703900996413177758922}{1137537236432197500181260734250094396427} a^{6} - \frac{181949075562686115592006801419527295586}{1137537236432197500181260734250094396427} a^{5} + \frac{247487427951449871502334840266458120532}{1137537236432197500181260734250094396427} a^{4} + \frac{510087467382393914223705226831151875026}{1137537236432197500181260734250094396427} a^{3} + \frac{457632661623088157651338583009554351826}{1137537236432197500181260734250094396427} a^{2} + \frac{390682357088706905861698882106154904140}{1137537236432197500181260734250094396427} a - \frac{412128350021647551731127619779937618229}{1137537236432197500181260734250094396427}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 78914062103.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5^2:C_3$ (as 15T25):
| A solvable group of order 375 |
| The 55 conjugacy class representatives for $C_5\times C_5^2:C_3$ are not computed |
| Character table for $C_5\times C_5^2:C_3$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | R | R | $15$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | $15$ | $15$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | $15$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $41$ | 41.5.4.4 | $x^{5} + 8856$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 41.5.0.1 | $x^{5} - x + 7$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 41.5.0.1 | $x^{5} - x + 7$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |