Normalized defining polynomial
\( x^{15} - 110 x^{13} - 145 x^{12} + 3950 x^{11} + 8819 x^{10} - 52050 x^{9} - 157290 x^{8} + 188340 x^{7} + 892410 x^{6} + 147955 x^{5} - 1649225 x^{4} - 1204580 x^{3} + 485235 x^{2} + 578100 x + 84419 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(47576877003281652927398681640625=5^{24}\cdot 7^{10}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $129.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4057272284333820575700974128560177204853} a^{14} - \frac{1242613621176630978480101266460601441147}{4057272284333820575700974128560177204853} a^{13} + \frac{675310823649245699888080611118631431061}{4057272284333820575700974128560177204853} a^{12} + \frac{750609017113832675615695732867428697889}{4057272284333820575700974128560177204853} a^{11} - \frac{1841158514979336099914233195067334908876}{4057272284333820575700974128560177204853} a^{10} + \frac{1106677756102271966632680692460910919514}{4057272284333820575700974128560177204853} a^{9} + \frac{232153532620226623931817294962128124787}{4057272284333820575700974128560177204853} a^{8} + \frac{733192387236441552422525617027410034433}{4057272284333820575700974128560177204853} a^{7} + \frac{957078044493665146450250340731897691005}{4057272284333820575700974128560177204853} a^{6} - \frac{1343115051022933779620669967735439157894}{4057272284333820575700974128560177204853} a^{5} - \frac{528459354158084321563373254782646238110}{4057272284333820575700974128560177204853} a^{4} + \frac{65828693167952102168864650471241178636}{4057272284333820575700974128560177204853} a^{3} + \frac{311543970466433840298190508072501933526}{4057272284333820575700974128560177204853} a^{2} - \frac{1760484383254365699017511111685848478938}{4057272284333820575700974128560177204853} a + \frac{45498207654619527220055489871656342564}{4057272284333820575700974128560177204853}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94377547844.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5^2:C_3$ (as 15T25):
| A solvable group of order 375 |
| The 55 conjugacy class representatives for $C_5\times C_5^2:C_3$ are not computed |
| Character table for $C_5\times C_5^2:C_3$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{5}$ | $15$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 41 | Data not computed | ||||||