Normalized defining polynomial
\( x^{15} - 2 x^{14} - 95 x^{13} + 330 x^{12} + 2696 x^{11} - 13890 x^{10} - 14576 x^{9} + 183885 x^{8} - 244262 x^{7} - 421848 x^{6} + 1178315 x^{5} - 361390 x^{4} - 1098512 x^{3} + 1025879 x^{2} - 229827 x - 2911 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4635329218173515544706698901009=7^{10}\cdot 71^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $110.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(497=7\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{497}(128,·)$, $\chi_{497}(1,·)$, $\chi_{497}(289,·)$, $\chi_{497}(72,·)$, $\chi_{497}(267,·)$, $\chi_{497}(270,·)$, $\chi_{497}(431,·)$, $\chi_{497}(338,·)$, $\chi_{497}(480,·)$, $\chi_{497}(214,·)$, $\chi_{497}(25,·)$, $\chi_{497}(57,·)$, $\chi_{497}(218,·)$, $\chi_{497}(380,·)$, $\chi_{497}(309,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{23} a^{12} - \frac{2}{23} a^{11} + \frac{7}{23} a^{10} - \frac{8}{23} a^{9} - \frac{2}{23} a^{8} - \frac{4}{23} a^{7} - \frac{2}{23} a^{5} + \frac{5}{23} a^{4} - \frac{2}{23} a^{3} - \frac{2}{23} a^{2} + \frac{9}{23} a + \frac{9}{23}$, $\frac{1}{2231} a^{13} - \frac{3}{2231} a^{12} + \frac{423}{2231} a^{11} + \frac{399}{2231} a^{10} - \frac{339}{2231} a^{9} + \frac{941}{2231} a^{8} + \frac{1085}{2231} a^{7} + \frac{734}{2231} a^{6} - \frac{16}{2231} a^{5} + \frac{798}{2231} a^{4} + \frac{27}{97} a^{3} - \frac{1093}{2231} a^{2} - \frac{36}{97} a + \frac{152}{2231}$, $\frac{1}{9773876143794286568547361474621} a^{14} + \frac{1493535810392149490090861180}{9773876143794286568547361474621} a^{13} + \frac{42860681567312407901790870491}{9773876143794286568547361474621} a^{12} - \frac{2070514051060440430530355880672}{9773876143794286568547361474621} a^{11} + \frac{3378240799485296352660406399215}{9773876143794286568547361474621} a^{10} - \frac{678282369240850837308722322989}{9773876143794286568547361474621} a^{9} - \frac{2520232530920443658776887246196}{9773876143794286568547361474621} a^{8} - \frac{2927720494676342827296937356651}{9773876143794286568547361474621} a^{7} + \frac{1861484210169034993088960653460}{9773876143794286568547361474621} a^{6} - \frac{239748593697193922954338346787}{9773876143794286568547361474621} a^{5} + \frac{3800917528627857463458387208528}{9773876143794286568547361474621} a^{4} - \frac{22004921068831191188332038892}{238387223019372843135301499381} a^{3} + \frac{2973361993329891135858733763312}{9773876143794286568547361474621} a^{2} - \frac{1629865558524630237503063595033}{9773876143794286568547361474621} a + \frac{102292993759243645483155234811}{238387223019372843135301499381}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26670515863.43193 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 5.5.25411681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | $15$ | R | $15$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.15.10.1 | $x^{15} + 4116 x^{6} - 2401 x^{3} + 1075648$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |
| $71$ | 71.5.4.1 | $x^{5} - 71$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 71.5.4.1 | $x^{5} - 71$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 71.5.4.1 | $x^{5} - 71$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |