Normalized defining polynomial
\( x^{15} - 2 x^{14} - 33 x^{13} + 46 x^{12} + 402 x^{11} - 362 x^{10} - 2214 x^{9} + 1335 x^{8} + 5700 x^{7} - 2740 x^{6} - 6581 x^{5} + 2926 x^{4} + 2758 x^{3} - 1103 x^{2} - 373 x + 131 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(432659002790862279847129=11^{12}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(143=11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{143}(1,·)$, $\chi_{143}(3,·)$, $\chi_{143}(100,·)$, $\chi_{143}(133,·)$, $\chi_{143}(16,·)$, $\chi_{143}(113,·)$, $\chi_{143}(9,·)$, $\chi_{143}(42,·)$, $\chi_{143}(14,·)$, $\chi_{143}(48,·)$, $\chi_{143}(81,·)$, $\chi_{143}(53,·)$, $\chi_{143}(27,·)$, $\chi_{143}(92,·)$, $\chi_{143}(126,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{210473000101397461} a^{14} + \frac{86646957983386562}{210473000101397461} a^{13} - \frac{44444239855040036}{210473000101397461} a^{12} + \frac{45138934947666029}{210473000101397461} a^{11} - \frac{60372376613571248}{210473000101397461} a^{10} + \frac{12886799768084115}{210473000101397461} a^{9} + \frac{84129775593377451}{210473000101397461} a^{8} - \frac{80096312558798962}{210473000101397461} a^{7} - \frac{38966385761037156}{210473000101397461} a^{6} - \frac{60634527264102097}{210473000101397461} a^{5} - \frac{97356638096463563}{210473000101397461} a^{4} + \frac{25518505785938775}{210473000101397461} a^{3} - \frac{69726274149756796}{210473000101397461} a^{2} - \frac{39904378281570716}{210473000101397461} a - \frac{577463602703962}{1606664122911431}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5243886.21648 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.169.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | $15$ | R | R | $15$ | $15$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 13 | Data not computed | ||||||