Normalized defining polynomial
\( x^{15} - 96 x^{13} - 46 x^{12} + 3483 x^{11} + 2268 x^{10} - 63251 x^{9} - 42696 x^{8} + 626151 x^{7} + 391884 x^{6} - 3388707 x^{5} - 1845144 x^{4} + 9263884 x^{3} + 4127760 x^{2} - 9751392 x - 3146976 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(416762576016182015933206397952=2^{10}\cdot 3^{20}\cdot 7^{4}\cdot 36497^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{28} a^{12} - \frac{3}{7} a^{10} + \frac{5}{14} a^{9} + \frac{11}{28} a^{8} + \frac{1}{28} a^{6} + \frac{1}{7} a^{5} - \frac{13}{28} a^{4} - \frac{1}{7} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{56} a^{13} - \frac{3}{14} a^{11} + \frac{5}{28} a^{10} + \frac{11}{56} a^{9} - \frac{1}{2} a^{8} + \frac{1}{56} a^{7} - \frac{3}{7} a^{6} - \frac{13}{56} a^{5} - \frac{1}{14} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{131826257606797798840303467161328} a^{14} - \frac{22930472973966603390742021805}{5492760733616574951679311131722} a^{13} - \frac{16884024519853141928472137275}{5492760733616574951679311131722} a^{12} + \frac{11523872515340701164494383441117}{65913128803398899420151733580664} a^{11} - \frac{9922521280418381935156923988903}{43942085868932599613434489053776} a^{10} + \frac{282071213232469493106785511527}{10985521467233149903358622263444} a^{9} - \frac{50596787232216004429608752347931}{131826257606797798840303467161328} a^{8} - \frac{2008745955639789054649661600955}{5492760733616574951679311131722} a^{7} - \frac{6973964970859449076644559749531}{43942085868932599613434489053776} a^{6} - \frac{861421373522514945509829378059}{10985521467233149903358622263444} a^{5} - \frac{18789972886977346582074312519209}{43942085868932599613434489053776} a^{4} + \frac{28341560932955430695717817673}{784680104802367850239901590246} a^{3} + \frac{33968558540563528259712939499}{4708080628814207101439409541476} a^{2} + \frac{203159431568676633119091010749}{784680104802367850239901590246} a - \frac{20791556922555783314066830970}{392340052401183925119950795123}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11897255378.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 466560 |
| The 72 conjugacy class representatives for [1/2.S(3)^5]S(5) are not computed |
| Character table for [1/2.S(3)^5]S(5) is not computed |
Intermediate fields
| 5.5.36497.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.10.10.3 | $x^{10} - 9 x^{8} + 22 x^{6} - 46 x^{4} + 9 x^{2} - 9$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $3$ | 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ |
| 3.12.16.18 | $x^{12} - 93 x^{11} + 9 x^{10} - 93 x^{9} - 27 x^{8} + 81 x^{7} + 108 x^{6} - 81 x^{5} - 81 x^{4} - 81$ | $3$ | $4$ | $16$ | 12T173 | $[2, 2, 2, 2]^{8}$ | |
| $7$ | 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.9.0.1 | $x^{9} + x^{2} - 6 x + 2$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 36497 | Data not computed | ||||||