Normalized defining polynomial
\( x^{15} - x^{14} - 84 x^{13} + 157 x^{12} + 2394 x^{11} - 6230 x^{10} - 25412 x^{9} + 85976 x^{8} + 79471 x^{7} - 472660 x^{6} + 188069 x^{5} + 851676 x^{4} - 1016574 x^{3} + 218070 x^{2} + 106911 x - 11813 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(40504199006061377874300161158921=181^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $127.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(181\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{181}(1,·)$, $\chi_{181}(27,·)$, $\chi_{181}(132,·)$, $\chi_{181}(5,·)$, $\chi_{181}(135,·)$, $\chi_{181}(42,·)$, $\chi_{181}(82,·)$, $\chi_{181}(29,·)$, $\chi_{181}(48,·)$, $\chi_{181}(145,·)$, $\chi_{181}(114,·)$, $\chi_{181}(117,·)$, $\chi_{181}(25,·)$, $\chi_{181}(59,·)$, $\chi_{181}(125,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{1}{7}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{49} a^{10} - \frac{2}{49} a^{9} + \frac{1}{49} a^{7} - \frac{2}{49} a^{6} + \frac{2}{7} a^{5} - \frac{15}{49} a^{4} + \frac{23}{49} a^{3} + \frac{2}{7} a^{2} - \frac{15}{49} a + \frac{23}{49}$, $\frac{1}{931} a^{11} + \frac{3}{931} a^{10} - \frac{17}{931} a^{9} + \frac{3}{49} a^{8} - \frac{60}{931} a^{7} + \frac{4}{931} a^{6} - \frac{10}{49} a^{5} + \frac{242}{931} a^{4} - \frac{158}{931} a^{3} - \frac{246}{931} a^{2} + \frac{305}{931} a - \frac{179}{931}$, $\frac{1}{931} a^{12} - \frac{1}{133} a^{10} - \frac{9}{133} a^{9} + \frac{5}{133} a^{8} - \frac{9}{133} a^{7} + \frac{26}{931} a^{6} + \frac{3}{19} a^{5} - \frac{34}{133} a^{4} - \frac{1}{7} a^{3} + \frac{16}{133} a^{2} - \frac{26}{133} a - \frac{223}{931}$, $\frac{1}{6517} a^{13} - \frac{2}{6517} a^{12} - \frac{4}{931} a^{10} + \frac{6}{931} a^{9} - \frac{135}{6517} a^{7} - \frac{10}{6517} a^{6} + \frac{1}{7} a^{5} + \frac{424}{931} a^{4} + \frac{428}{931} a^{3} + \frac{1}{7} a^{2} - \frac{650}{6517} a + \frac{3050}{6517}$, $\frac{1}{207099198265145851} a^{14} - \frac{13676314615444}{207099198265145851} a^{13} + \frac{23388108648673}{207099198265145851} a^{12} - \frac{10640390733417}{29585599752163693} a^{11} + \frac{57666918054593}{29585599752163693} a^{10} - \frac{1807509033648946}{29585599752163693} a^{9} - \frac{14540033245453641}{207099198265145851} a^{8} - \frac{13287640542566072}{207099198265145851} a^{7} - \frac{6232130400083418}{207099198265145851} a^{6} + \frac{6439692090136043}{29585599752163693} a^{5} - \frac{6254795910644604}{29585599752163693} a^{4} - \frac{308177204572411}{1557136829061247} a^{3} - \frac{71829353299804792}{207099198265145851} a^{2} + \frac{70558898913181996}{207099198265145851} a - \frac{21479519776194495}{207099198265145851}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 885563835346 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.32761.1, 5.5.1073283121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{15}$ | $15$ | $15$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{15}$ | $15$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | $15$ | $15$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 181 | Data not computed | ||||||