Normalized defining polynomial
\( x^{15} - 48 x^{13} - 4 x^{12} + 720 x^{11} - 111 x^{10} - 4259 x^{9} + 1809 x^{8} + 10989 x^{7} - 7125 x^{6} - 11826 x^{5} + 10260 x^{4} + 3483 x^{3} - 4617 x^{2} + 486 x + 243 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(401095849317140421258328161=3^{19}\cdot 83\cdot 401^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 83, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{3}$, $\frac{1}{18} a^{10} - \frac{1}{18} a^{9} - \frac{1}{9} a^{8} + \frac{1}{18} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{18} a^{11} - \frac{1}{6} a^{9} - \frac{1}{18} a^{8} - \frac{1}{6} a^{7} - \frac{4}{9} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{54} a^{12} + \frac{1}{27} a^{9} + \frac{1}{18} a^{8} - \frac{1}{6} a^{7} + \frac{2}{27} a^{6} + \frac{2}{9} a^{5} - \frac{1}{3} a^{4} - \frac{5}{18} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{702} a^{13} + \frac{1}{702} a^{12} + \frac{2}{117} a^{11} + \frac{1}{351} a^{10} - \frac{1}{54} a^{9} + \frac{4}{39} a^{8} + \frac{103}{702} a^{7} - \frac{1}{351} a^{6} - \frac{29}{117} a^{5} - \frac{11}{234} a^{4} + \frac{61}{234} a^{3} + \frac{4}{39} a^{2} - \frac{1}{2} a - \frac{5}{26}$, $\frac{1}{12161937294} a^{14} + \frac{924880}{2026989549} a^{13} - \frac{6075161}{2026989549} a^{12} + \frac{102364207}{6080968647} a^{11} - \frac{24353783}{4053979098} a^{10} - \frac{157556557}{4053979098} a^{9} + \frac{750953159}{6080968647} a^{8} + \frac{196972237}{2026989549} a^{7} + \frac{20030773}{225221061} a^{6} + \frac{1964409271}{4053979098} a^{5} - \frac{293415302}{675663183} a^{4} - \frac{99030775}{225221061} a^{3} + \frac{130240205}{450442122} a^{2} + \frac{35960259}{75073687} a + \frac{28501449}{75073687}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 443934700.445 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 77760 |
| The 72 conjugacy class representatives for [S(3)^5]D(5)=S(3)wrD(5) are not computed |
| Character table for [S(3)^5]D(5)=S(3)wrD(5) is not computed |
Intermediate fields
| 5.5.160801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | R | $15$ | $15$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.5.2 | $x^{3} + 21$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ |
| 3.6.6.2 | $x^{6} + 6 x^{4} + 6 x^{3} + 18$ | $3$ | $2$ | $6$ | $C_3^2:C_4$ | $[3/2, 3/2]_{2}^{2}$ | |
| 3.6.8.1 | $x^{6} + 6 x^{5} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_3^2:C_4$ | $[2, 2]^{4}$ | |
| $83$ | $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 83.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 401 | Data not computed | ||||||