Normalized defining polynomial
\( x^{15} - 7 x^{14} - 296 x^{13} + 2167 x^{12} + 28674 x^{11} - 226870 x^{10} - 1044166 x^{9} + 9834372 x^{8} + 9917111 x^{7} - 174872823 x^{6} + 113400248 x^{5} + 1074185801 x^{4} - 1656509907 x^{3} - 278900011 x^{2} + 702378508 x + 160028479 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(380161411092019035625018770220810240000000000=2^{24}\cdot 5^{10}\cdot 13^{12}\cdot 315583241^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $937.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 315583241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} + \frac{4}{13} a^{11} - \frac{2}{13} a^{10} + \frac{4}{13} a^{9} + \frac{2}{13} a^{8} + \frac{4}{13} a^{7} - \frac{1}{13} a^{6}$, $\frac{1}{13} a^{13} - \frac{5}{13} a^{11} - \frac{1}{13} a^{10} - \frac{1}{13} a^{9} - \frac{4}{13} a^{8} - \frac{4}{13} a^{7} + \frac{4}{13} a^{6}$, $\frac{1}{851192539714119853457180667838171994640526916003126520685} a^{14} + \frac{15874595513005105182141866812141080474585504015102073981}{851192539714119853457180667838171994640526916003126520685} a^{13} + \frac{26288592435605967402127874310893547391143056828717932082}{851192539714119853457180667838171994640526916003126520685} a^{12} + \frac{239428277907955110576853426423412600820258739643141819153}{851192539714119853457180667838171994640526916003126520685} a^{11} + \frac{236307398037347211441869277105578461079324325294201432983}{851192539714119853457180667838171994640526916003126520685} a^{10} + \frac{316393905613818653326764748970060010670021241417244640279}{851192539714119853457180667838171994640526916003126520685} a^{9} + \frac{384904407370315595508536369597927693962446587355644890941}{851192539714119853457180667838171994640526916003126520685} a^{8} - \frac{11816538081662414371857021473168954601100550017012815838}{170238507942823970691436133567634398928105383200625304137} a^{7} + \frac{323091092623456759030468891387800160136401952791923639771}{851192539714119853457180667838171994640526916003126520685} a^{6} + \frac{3132771219621576706602691699930251134140108563345696508}{13095269841755690053187394889818030686777337169278869549} a^{5} + \frac{11352189725617381194914390807333295039467868113792877646}{65476349208778450265936974449090153433886685846394347745} a^{4} - \frac{4197370489719649106622351014488923461813591297524352636}{13095269841755690053187394889818030686777337169278869549} a^{3} - \frac{580965193977123582269268871164120596599554851735587004}{65476349208778450265936974449090153433886685846394347745} a^{2} - \frac{10587266942839703021068823152307624787906974595083016934}{65476349208778450265936974449090153433886685846394347745} a - \frac{4659890056660334858335262057898771457257493534621229151}{65476349208778450265936974449090153433886685846394347745}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 833871897761000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12000 |
| The 32 conjugacy class representatives for [1/2.F(5)^3]3 |
| Character table for [1/2.F(5)^3]3 is not computed |
Intermediate fields
| 3.3.169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | $15$ | $15$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.12.24.231 | $x^{12} + 24 x^{11} - 26 x^{10} - 20 x^{9} + 6 x^{8} + 24 x^{7} + 16 x^{6} - 16 x^{5} - 4 x^{4} - 16 x^{3} - 8 x^{2} + 16 x - 24$ | $4$ | $3$ | $24$ | 12T55 | $[2, 2, 3, 3, 3]^{3}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.5.5.2 | $x^{5} + 5 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ | |
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 315583241 | Data not computed | ||||||