Normalized defining polynomial
\( x^{15} - 1230 x^{13} - 4715 x^{12} + 558830 x^{11} + 3856747 x^{10} - 108676650 x^{9} - 1017450465 x^{8} + 7784845480 x^{7} + 93889842765 x^{6} - 66419271922 x^{5} - 1819133611475 x^{4} + 782351217820 x^{3} + 871835831985 x^{2} - 400496140345 x + 41960414299 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(379897805506290388370204518377780914306640625=5^{24}\cdot 7^{10}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $937.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{205} a^{5} - \frac{1}{5}$, $\frac{1}{410} a^{6} - \frac{1}{410} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{10} a + \frac{1}{10}$, $\frac{1}{410} a^{7} + \frac{2}{5} a^{2} - \frac{1}{2}$, $\frac{1}{410} a^{8} + \frac{2}{5} a^{3} - \frac{1}{2} a$, $\frac{1}{410} a^{9} + \frac{2}{5} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{84050} a^{10} - \frac{1}{1025} a^{5} - \frac{1}{2} a^{3} - \frac{12}{25}$, $\frac{1}{588350} a^{11} - \frac{1}{2870} a^{9} + \frac{1}{1435} a^{8} + \frac{3}{2870} a^{7} - \frac{1}{7175} a^{6} + \frac{3}{1435} a^{5} + \frac{1}{70} a^{4} - \frac{6}{35} a^{3} + \frac{27}{70} a^{2} + \frac{38}{175} a - \frac{31}{70}$, $\frac{1}{3530100} a^{12} + \frac{19}{3530100} a^{10} - \frac{1}{1435} a^{9} + \frac{1}{5740} a^{8} - \frac{6}{7175} a^{7} - \frac{1}{1148} a^{6} + \frac{6}{7175} a^{5} - \frac{103}{420} a^{4} - \frac{13}{70} a^{3} + \frac{107}{700} a^{2} - \frac{5}{14} a - \frac{113}{300}$, $\frac{1}{3530100} a^{13} + \frac{1}{3530100} a^{11} + \frac{3}{588350} a^{10} - \frac{1}{820} a^{9} - \frac{1}{2050} a^{8} + \frac{1}{1148} a^{7} - \frac{17}{14350} a^{6} + \frac{59}{86100} a^{5} - \frac{9}{70} a^{4} + \frac{47}{700} a^{3} + \frac{2}{7} a^{2} - \frac{899}{2100} a + \frac{54}{175}$, $\frac{1}{5156541970098414709408557555402328171202132100} a^{14} - \frac{23801313628134890279730537713638262611}{257827098504920735470427877770116408560106605} a^{13} + \frac{6419075135648344666310783010664934631}{61387404405933508445339970897646763942882525} a^{12} - \frac{1023376879432878643751635341211778344723}{2578270985049207354704278777701164085601066050} a^{11} - \frac{238817764880418606546651057448424715937}{51565419700984147094085575554023281712021321} a^{10} + \frac{9659507675190963676996173952386729323714}{10480776361988647783350726738622618234150675} a^{9} + \frac{1551506978501434625008563468388173711663}{4192310544795459113340290695449047293660270} a^{8} + \frac{4043560940327974124415977067860426283971}{10480776361988647783350726738622618234150675} a^{7} + \frac{56263244582716564520772068664535672324951}{62884658171931886700104360431735709404904050} a^{6} + \frac{25000276844874747604287752025298462750097}{12576931634386377340020872086347141880980810} a^{5} + \frac{14867517783955543739746521076816325364914}{766886075267462032928101956484581822011025} a^{4} + \frac{3524475649673727805001258310694485194341}{102251476702328271057080260864610909601470} a^{3} - \frac{748369414250935316896522627200757683224503}{1533772150534924065856203912969163644022050} a^{2} + \frac{19192412999692231065213433150765411595236}{766886075267462032928101956484581822011025} a + \frac{291801637011852665921849735524731453443101}{613508860213969626342481565187665457608820}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 221873527966000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:C_3$ (as 15T9):
| A solvable group of order 75 |
| The 11 conjugacy class representatives for $C_5^2 : C_3$ |
| Character table for $C_5^2 : C_3$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{5}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $41$ | 41.5.4.4 | $x^{5} + 8856$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 41.5.4.2 | $x^{5} + 246$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 41.5.4.5 | $x^{5} - 53136$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |