Normalized defining polynomial
\( x^{15} - x^{14} - 306 x^{13} + 333 x^{12} + 28495 x^{11} - 15049 x^{10} - 1207192 x^{9} - 142563 x^{8} + 25291850 x^{7} + 17147018 x^{6} - 249268798 x^{5} - 260610108 x^{4} + 988858909 x^{3} + 1160684561 x^{2} - 1309842980 x - 1612488125 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3710364839706702058501959007886164480000=2^{12}\cdot 5^{4}\cdot 13^{13}\cdot 2187542681^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $434.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 2187542681$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{20} a^{12} - \frac{1}{10} a^{9} + \frac{3}{20} a^{8} + \frac{1}{10} a^{7} - \frac{1}{10} a^{6} - \frac{2}{5} a^{5} - \frac{1}{2} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{4}$, $\frac{1}{20} a^{13} - \frac{1}{10} a^{10} + \frac{3}{20} a^{9} + \frac{1}{10} a^{8} - \frac{1}{10} a^{7} + \frac{1}{10} a^{6} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4219529971389322678383062557871088439486205123732780} a^{14} - \frac{101477857039587584220772342023307160143828334689}{7961377304508155996949174637492619697143783252326} a^{13} - \frac{1050023126975579176740176209484034200354085724681}{2109764985694661339191531278935544219743102561866390} a^{12} - \frac{395839309513127185107644613022173856570392370306881}{2109764985694661339191531278935544219743102561866390} a^{11} - \frac{415945299336105366905790788966190243625621371223097}{4219529971389322678383062557871088439486205123732780} a^{10} - \frac{18769222710229166786388847735083809008861819199061}{1054882492847330669595765639467772109871551280933195} a^{9} + \frac{3713057112597238990868883399630110916417292213467}{39806886522540779984745873187463098485718916261630} a^{8} - \frac{494109099968879917516111071272093917339455815749481}{2109764985694661339191531278935544219743102561866390} a^{7} + \frac{227443935727190452307177552448338371209186870841481}{1054882492847330669595765639467772109871551280933195} a^{6} - \frac{210491277228813596860223881281246696777407428223511}{1054882492847330669595765639467772109871551280933195} a^{5} + \frac{971079039732823269114419612485699943283048104691381}{2109764985694661339191531278935544219743102561866390} a^{4} + \frac{23008892325918154483881925263849245775779347912331}{1054882492847330669595765639467772109871551280933195} a^{3} - \frac{356040651221232725405047735631053144001153738479449}{4219529971389322678383062557871088439486205123732780} a^{2} - \frac{279933880314451048301704517967177326067365181476647}{1054882492847330669595765639467772109871551280933195} a + \frac{58716372279808475538686075277703225912788772599880}{210976498569466133919153127893554421974310256186639}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1788919114380000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6000 |
| The 28 conjugacy class representatives for [D(5)^3:2]3 |
| Character table for [D(5)^3:2]3 is not computed |
Intermediate fields
| 3.3.169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.12.12.12 | $x^{12} + 66 x^{10} - 93 x^{8} - 68 x^{6} - 41 x^{4} + 66 x^{2} - 123$ | $2$ | $6$ | $12$ | 12T29 | $[2, 2, 2]^{6}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |
| 2187542681 | Data not computed | ||||||