Normalized defining polynomial
\( x^{15} - 2 x^{14} - 93 x^{13} + 144 x^{12} + 2960 x^{11} - 3738 x^{10} - 41558 x^{9} + 37495 x^{8} + 276726 x^{7} - 122146 x^{6} - 804863 x^{5} - 14194 x^{4} + 594218 x^{3} + 5239 x^{2} - 121589 x + 18863 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(365924546437605291907270802025529=13^{10}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $148.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(793=13\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{793}(672,·)$, $\chi_{793}(1,·)$, $\chi_{793}(386,·)$, $\chi_{793}(131,·)$, $\chi_{793}(81,·)$, $\chi_{793}(705,·)$, $\chi_{793}(9,·)$, $\chi_{793}(302,·)$, $\chi_{793}(367,·)$, $\chi_{793}(497,·)$, $\chi_{793}(339,·)$, $\chi_{793}(729,·)$, $\chi_{793}(217,·)$, $\chi_{793}(508,·)$, $\chi_{793}(607,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{29} a^{12} + \frac{3}{29} a^{11} + \frac{5}{29} a^{10} + \frac{4}{29} a^{8} - \frac{8}{29} a^{7} + \frac{1}{29} a^{6} - \frac{13}{29} a^{5} + \frac{6}{29} a^{4} + \frac{14}{29} a^{3} + \frac{2}{29} a^{2} + \frac{14}{29} a - \frac{11}{29}$, $\frac{1}{29} a^{13} - \frac{4}{29} a^{11} + \frac{14}{29} a^{10} + \frac{4}{29} a^{9} + \frac{9}{29} a^{8} - \frac{4}{29} a^{7} + \frac{13}{29} a^{6} - \frac{13}{29} a^{5} - \frac{4}{29} a^{4} - \frac{11}{29} a^{3} + \frac{8}{29} a^{2} + \frac{5}{29} a + \frac{4}{29}$, $\frac{1}{5662037402009775776613726818869} a^{14} - \frac{33288314877623599836300901583}{5662037402009775776613726818869} a^{13} - \frac{1864853268665625340703073088}{195242669034819854365990579961} a^{12} - \frac{542960388338890476193353544060}{5662037402009775776613726818869} a^{11} - \frac{2136893500160437884946461903255}{5662037402009775776613726818869} a^{10} + \frac{2600116591390834205641518262385}{5662037402009775776613726818869} a^{9} + \frac{1292956835081908188656964678278}{5662037402009775776613726818869} a^{8} + \frac{1954570635177293091704225691524}{5662037402009775776613726818869} a^{7} - \frac{1722701202096359727360465135360}{5662037402009775776613726818869} a^{6} + \frac{64989745915757681514444671172}{5662037402009775776613726818869} a^{5} + \frac{1299892900195203571508813793524}{5662037402009775776613726818869} a^{4} - \frac{561505825083476190541256722069}{5662037402009775776613726818869} a^{3} + \frac{1149824247358465459697550769449}{5662037402009775776613726818869} a^{2} - \frac{2529748324466721385513734754971}{5662037402009775776613726818869} a - \frac{1398755347265996755267303981336}{5662037402009775776613726818869}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 322714450041.6809 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.169.1, 5.5.13845841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $61$ | 61.15.12.1 | $x^{15} + 3050 x^{10} + 1856779 x^{5} + 22698100000$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |