Normalized defining polynomial
\( x^{15} - 5 x^{14} - 50 x^{13} + 260 x^{12} + 745 x^{11} - 4439 x^{10} - 2980 x^{9} + 29685 x^{8} - 4955 x^{7} - 81705 x^{6} + 43089 x^{5} + 82545 x^{4} - 55625 x^{3} - 17710 x^{2} + 9800 x + 2401 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(365440026390612125396728515625=5^{24}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(475=5^{2}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{475}(96,·)$, $\chi_{475}(1,·)$, $\chi_{475}(391,·)$, $\chi_{475}(296,·)$, $\chi_{475}(201,·)$, $\chi_{475}(106,·)$, $\chi_{475}(11,·)$, $\chi_{475}(406,·)$, $\chi_{475}(311,·)$, $\chi_{475}(216,·)$, $\chi_{475}(121,·)$, $\chi_{475}(26,·)$, $\chi_{475}(381,·)$, $\chi_{475}(286,·)$, $\chi_{475}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{49} a^{11} + \frac{3}{49} a^{10} + \frac{3}{49} a^{9} + \frac{2}{49} a^{8} - \frac{3}{7} a^{6} + \frac{13}{49} a^{5} - \frac{10}{49} a^{4} + \frac{4}{49} a^{3} + \frac{19}{49} a^{2} - \frac{1}{7} a$, $\frac{1}{49} a^{12} + \frac{1}{49} a^{10} + \frac{1}{49} a^{8} - \frac{22}{49} a^{6} - \frac{22}{49} a^{4} - \frac{22}{49} a^{2}$, $\frac{1}{7399} a^{13} + \frac{2}{7399} a^{12} - \frac{68}{7399} a^{11} + \frac{173}{7399} a^{10} + \frac{508}{7399} a^{9} + \frac{74}{7399} a^{8} + \frac{6}{7399} a^{7} - \frac{1633}{7399} a^{6} - \frac{723}{7399} a^{5} + \frac{2032}{7399} a^{4} - \frac{3658}{7399} a^{3} + \frac{1277}{7399} a^{2} - \frac{474}{1057} a + \frac{44}{151}$, $\frac{1}{699192908127222607} a^{14} + \frac{46755261178056}{699192908127222607} a^{13} + \frac{93074637234192}{14269243023004543} a^{12} - \frac{2969946382433477}{699192908127222607} a^{11} + \frac{49276306216377287}{699192908127222607} a^{10} - \frac{4237620374872071}{699192908127222607} a^{9} - \frac{9522573190372747}{699192908127222607} a^{8} - \frac{4017121165362764}{699192908127222607} a^{7} + \frac{27260933122117795}{99884701161031801} a^{6} - \frac{112076033040745957}{699192908127222607} a^{5} - \frac{242221223136511589}{699192908127222607} a^{4} + \frac{337071987668508370}{699192908127222607} a^{3} + \frac{44780333870462580}{99884701161031801} a^{2} - \frac{2040148524762616}{14269243023004543} a + \frac{131540357786125}{291209041285807}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47458423135.208374 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.361.1, 5.5.390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | $15$ | $15$ | R | $15$ | $15$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | $15$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.15.24.88 | $x^{15} + 375 x^{14} + 415 x^{13} + 575 x^{12} + 520 x^{11} + 378 x^{10} + 145 x^{9} + 275 x^{8} + 85 x^{7} + 545 x^{6} + 127 x^{5} + 380 x^{4} + 470 x^{3} + 615 x + 368$ | $5$ | $3$ | $24$ | $C_{15}$ | $[2]^{3}$ |
| $19$ | 19.15.10.1 | $x^{15} + 102885 x^{6} - 130321 x^{3} + 309512375$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |