Normalized defining polynomial
\( x^{15} - 56 x^{13} - 12 x^{12} + 1084 x^{11} + 224 x^{10} - 9480 x^{9} - 696 x^{8} + 39452 x^{7} - 4512 x^{6} - 71584 x^{5} + 21376 x^{4} + 40656 x^{3} - 8352 x^{2} - 7408 x - 736 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36430296336664162471668760576=2^{14}\cdot 11^{8}\cdot 467^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 467$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{7472} a^{13} + \frac{89}{3736} a^{12} - \frac{55}{3736} a^{11} + \frac{53}{934} a^{10} - \frac{9}{467} a^{9} + \frac{113}{934} a^{8} - \frac{75}{934} a^{7} + \frac{77}{1868} a^{6} + \frac{321}{1868} a^{5} + \frac{211}{934} a^{4} - \frac{257}{934} a^{3} + \frac{419}{934} a^{2} + \frac{159}{467} a - \frac{205}{467}$, $\frac{1}{1285932242859568} a^{14} + \frac{4962684681}{321483060714892} a^{13} + \frac{4694831336623}{1285932242859568} a^{12} - \frac{12329697067979}{321483060714892} a^{11} - \frac{23121996487305}{642966121429784} a^{10} - \frac{926500769450}{80370765178723} a^{9} - \frac{46525949458405}{642966121429784} a^{8} - \frac{2283657915167}{160741530357446} a^{7} + \frac{4252875586266}{80370765178723} a^{6} - \frac{44073811989291}{321483060714892} a^{5} + \frac{12263586250001}{160741530357446} a^{4} + \frac{6139307559343}{80370765178723} a^{3} - \frac{21755939101722}{80370765178723} a^{2} - \frac{23677728717253}{80370765178723} a + \frac{19799198459673}{80370765178723}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15873657608.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 360 |
| The 7 conjugacy class representatives for $A_6$ |
| Character table for $A_6$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 6 siblings: | data not computed |
| Degree 10 sibling: | data not computed |
| Degree 15 sibling: | data not computed |
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.6.6.7 | $x^{6} + 2 x^{2} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 2.8.8.11 | $x^{8} + 20 x^{2} + 4$ | $4$ | $2$ | $8$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 467 | Data not computed | ||||||