Normalized defining polynomial
\( x^{15} - 1386 x^{13} - 11448 x^{12} + 529090 x^{11} + 8049544 x^{10} - 14432166 x^{9} - 801109368 x^{8} - 4342753996 x^{7} - 7195456296 x^{6} + 3079532200 x^{5} + 17546867280 x^{4} + 9456914200 x^{3} - 4094584000 x^{2} - 2204776000 x + 629936000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3550599197078961086196327997289859114171513438208000000=2^{24}\cdot 5^{6}\cdot 23^{2}\cdot 37^{5}\cdot 67^{2}\cdot 39371^{4}\cdot 185021^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $4331.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 23, 37, 67, 39371, 185021$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{20} a^{11} - \frac{1}{20} a^{9} + \frac{1}{10} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{3}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{40} a^{12} + \frac{1}{10} a^{10} + \frac{1}{20} a^{9} - \frac{1}{4} a^{8} + \frac{1}{10} a^{7} - \frac{3}{20} a^{6} + \frac{3}{10} a^{5} - \frac{2}{5} a^{4} + \frac{1}{10} a^{3}$, $\frac{1}{44400} a^{13} - \frac{19}{2220} a^{12} + \frac{59}{7400} a^{11} - \frac{817}{11100} a^{10} - \frac{57}{1480} a^{9} + \frac{614}{2775} a^{8} + \frac{4657}{22200} a^{7} + \frac{139}{925} a^{6} - \frac{1283}{3700} a^{5} - \frac{107}{925} a^{4} + \frac{121}{1110} a^{3} - \frac{232}{555} a^{2} + \frac{41}{222} a - \frac{10}{111}$, $\frac{1}{257710263600173539770582432364334639945858618573659683324000} a^{14} - \frac{259086075217370656323550536745782021723864846106078021}{25771026360017353977058243236433463994585861857365968332400} a^{13} - \frac{903818047646480671485397881158613053626500103442150576533}{128855131800086769885291216182167319972929309286829841662000} a^{12} + \frac{1346278178363628034033686211267651459530726743838783675203}{64427565900043384942645608091083659986464654643414920831000} a^{11} - \frac{3596113570746817611837273446134095886737905538097114667}{139302845189282994470585098575316021592356010039816045040} a^{10} + \frac{1443801891836830744758644508271310017124812129181552250521}{64427565900043384942645608091083659986464654643414920831000} a^{9} + \frac{7298475545713426247037496474315519129076559116891889954197}{128855131800086769885291216182167319972929309286829841662000} a^{8} - \frac{5619393263170421189713812170502097547764503391577502041407}{64427565900043384942645608091083659986464654643414920831000} a^{7} - \frac{3603545998786201635029365263514578653956239973142066116253}{21475855300014461647548536030361219995488218214471640277000} a^{6} - \frac{1841457893217060652458276362043278555902124508332454594427}{5368963825003615411887134007590304998872054553617910069250} a^{5} - \frac{1372635590181619856969290918225705794069196034461025472809}{6442756590004338494264560809108365998646465464341492083100} a^{4} + \frac{353421914136183740315325998931797659341175845954776745251}{1610689147501084623566140202277091499661616366085373020775} a^{3} - \frac{441817554926441373749753032997871436206859002025857033821}{1288551318000867698852912161821673199729293092868298416620} a^{2} - \frac{75432519206412693846840746574785435375619747121629591949}{214758553000144616475485360303612199954882182144716402770} a + \frac{13304034156354003348524505935323476609587039818385609687}{64427565900043384942645608091083659986464654643414920831}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 149997398390000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1296000 |
| The 65 conjugacy class representatives for [A(5)^3]S(3)=A(5)wrS(3) are not computed |
| Character table for [A(5)^3]S(3)=A(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | $15$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.11.8 | $x^{6} + 4 x^{4} + 2 x^{2} + 6$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| 2.6.11.8 | $x^{6} + 4 x^{4} + 2 x^{2} + 6$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37 | Data not computed | ||||||
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 39371 | Data not computed | ||||||
| 185021 | Data not computed | ||||||