Properties

Label 15.15.3467197850...0000.1
Degree $15$
Signature $[15, 0]$
Discriminant $2^{18}\cdot 5^{19}\cdot 37^{5}$
Root discriminant $58.79$
Ramified primes $2, 5, 37$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T49

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![260, -100, -2750, 1725, 7750, -7469, -5260, 6850, 1190, -2525, -78, 440, 0, -35, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 35*x^13 + 440*x^11 - 78*x^10 - 2525*x^9 + 1190*x^8 + 6850*x^7 - 5260*x^6 - 7469*x^5 + 7750*x^4 + 1725*x^3 - 2750*x^2 - 100*x + 260)
 
gp: K = bnfinit(x^15 - 35*x^13 + 440*x^11 - 78*x^10 - 2525*x^9 + 1190*x^8 + 6850*x^7 - 5260*x^6 - 7469*x^5 + 7750*x^4 + 1725*x^3 - 2750*x^2 - 100*x + 260, 1)
 

Normalized defining polynomial

\( x^{15} - 35 x^{13} + 440 x^{11} - 78 x^{10} - 2525 x^{9} + 1190 x^{8} + 6850 x^{7} - 5260 x^{6} - 7469 x^{5} + 7750 x^{4} + 1725 x^{3} - 2750 x^{2} - 100 x + 260 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(346719785000000000000000000=2^{18}\cdot 5^{19}\cdot 37^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $58.79$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{5}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{6}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{7}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{8}$, $\frac{1}{74430072110} a^{14} + \frac{970015443}{37215036055} a^{13} + \frac{2357643309}{74430072110} a^{12} + \frac{2707115122}{37215036055} a^{11} - \frac{595852646}{37215036055} a^{10} + \frac{5148705863}{37215036055} a^{9} + \frac{22337422451}{74430072110} a^{8} + \frac{6292927307}{37215036055} a^{7} + \frac{4461818077}{37215036055} a^{6} + \frac{12803891404}{37215036055} a^{5} + \frac{7151666951}{14886014422} a^{4} + \frac{1675805291}{7443007211} a^{3} + \frac{7110423761}{14886014422} a^{2} - \frac{1076300590}{7443007211} a + \frac{2913215678}{7443007211}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 733765148.28 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T49:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 3000
The 29 conjugacy class representatives for [5^3:4]S(3)
Character table for [5^3:4]S(3) is not computed

Intermediate fields

3.3.148.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 15 siblings: data not computed
Degree 30 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ R ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ R $15$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.12.16.18$x^{12} + x^{10} + 6 x^{8} - 3 x^{6} + 6 x^{4} + x^{2} - 3$$6$$2$$16$$C_3 : C_4$$[2]_{3}^{2}$
$5$5.5.9.1$x^{5} + 5$$5$$1$$9$$F_5$$[9/4]_{4}$
5.10.10.12$x^{10} + 20 x^{6} + 10 x^{5} + 25 x^{2} + 100 x + 25$$5$$2$$10$$(C_5^2 : C_4) : C_2$$[5/4, 5/4]_{4}^{2}$
37Data not computed