Normalized defining polynomial
\( x^{15} - x^{14} - 98 x^{13} + 33 x^{12} + 3496 x^{11} + 320 x^{10} - 56185 x^{9} - 12878 x^{8} + 436039 x^{7} + 77800 x^{6} - 1621482 x^{5} - 146020 x^{4} + 2557353 x^{3} + 215635 x^{2} - 1305471 x - 67519 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(346700425107361035262655933030041=211^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $147.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(211\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{211}(19,·)$, $\chi_{211}(1,·)$, $\chi_{211}(100,·)$, $\chi_{211}(134,·)$, $\chi_{211}(71,·)$, $\chi_{211}(137,·)$, $\chi_{211}(107,·)$, $\chi_{211}(14,·)$, $\chi_{211}(83,·)$, $\chi_{211}(21,·)$, $\chi_{211}(150,·)$, $\chi_{211}(55,·)$, $\chi_{211}(196,·)$, $\chi_{211}(201,·)$, $\chi_{211}(188,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{67} a^{11} + \frac{4}{67} a^{10} + \frac{3}{67} a^{9} + \frac{6}{67} a^{8} - \frac{16}{67} a^{7} - \frac{8}{67} a^{6} - \frac{15}{67} a^{5} - \frac{30}{67} a^{4} - \frac{24}{67} a^{3} + \frac{14}{67} a^{2} + \frac{21}{67} a + \frac{30}{67}$, $\frac{1}{67} a^{12} - \frac{13}{67} a^{10} - \frac{6}{67} a^{9} + \frac{27}{67} a^{8} - \frac{11}{67} a^{7} + \frac{17}{67} a^{6} + \frac{30}{67} a^{5} + \frac{29}{67} a^{4} - \frac{24}{67} a^{3} + \frac{32}{67} a^{2} + \frac{13}{67} a + \frac{14}{67}$, $\frac{1}{67} a^{13} - \frac{21}{67} a^{10} - \frac{1}{67} a^{9} + \frac{10}{67} a^{7} - \frac{7}{67} a^{6} - \frac{32}{67} a^{5} - \frac{12}{67} a^{4} - \frac{12}{67} a^{3} - \frac{6}{67} a^{2} + \frac{19}{67} a - \frac{12}{67}$, $\frac{1}{57122859335712730799941208052701} a^{14} - \frac{276753200053625777877760660253}{57122859335712730799941208052701} a^{13} + \frac{368807489747736043635261875527}{57122859335712730799941208052701} a^{12} - \frac{248966158562678010995739761475}{57122859335712730799941208052701} a^{11} + \frac{15644424350074702227895378914189}{57122859335712730799941208052701} a^{10} + \frac{4855978392766559859619117645378}{57122859335712730799941208052701} a^{9} - \frac{18487364851098705904891791660091}{57122859335712730799941208052701} a^{8} + \frac{21032480882500717627807258561870}{57122859335712730799941208052701} a^{7} + \frac{5344657885838136674546545839940}{57122859335712730799941208052701} a^{6} + \frac{8050104484959398945668733360453}{57122859335712730799941208052701} a^{5} + \frac{5344590201048675439022564093488}{57122859335712730799941208052701} a^{4} + \frac{22284174352994938440971679943780}{57122859335712730799941208052701} a^{3} + \frac{841937309566237430408270401413}{57122859335712730799941208052701} a^{2} - \frac{1065439110849203378869372567848}{57122859335712730799941208052701} a + \frac{92814805820781741991006373034}{212352636935735058735840922129}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 175451316933 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.44521.1, 5.5.1982119441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | $15$ | $15$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | $15$ | $15$ | $15$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 211 | Data not computed | ||||||