Normalized defining polynomial
\( x^{15} - 2619 x^{13} - 7884 x^{12} + 1702691 x^{11} + 3664210 x^{10} - 230491062 x^{9} - 677187108 x^{8} + 7850882532 x^{7} + 25585029672 x^{6} - 14869135600 x^{5} - 101017715040 x^{4} - 37835364800 x^{3} + 98787324800 x^{2} + 75851328000 x + 14447872000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(34548641890596001947725147253590025498737248434540544000000=2^{18}\cdot 5^{6}\cdot 7^{2}\cdot 229^{5}\cdot 56437^{4}\cdot 164142457^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $7990.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 229, 56437, 164142457$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{10} + \frac{1}{16} a^{8} - \frac{1}{4} a^{7} - \frac{1}{16} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{160} a^{11} + \frac{1}{160} a^{9} - \frac{1}{40} a^{8} + \frac{31}{160} a^{7} + \frac{1}{16} a^{6} - \frac{1}{80} a^{5} + \frac{3}{40} a^{4} - \frac{17}{40} a^{3} - \frac{1}{20} a^{2}$, $\frac{1}{320} a^{12} + \frac{1}{320} a^{10} - \frac{1}{80} a^{9} + \frac{31}{320} a^{8} + \frac{1}{32} a^{7} + \frac{39}{160} a^{6} + \frac{3}{80} a^{5} - \frac{17}{80} a^{4} - \frac{11}{40} a^{3} - \frac{1}{2} a$, $\frac{1}{3200} a^{13} + \frac{1}{3200} a^{11} - \frac{21}{800} a^{10} + \frac{111}{3200} a^{9} - \frac{7}{320} a^{8} - \frac{321}{1600} a^{7} + \frac{23}{800} a^{6} - \frac{77}{800} a^{5} + \frac{89}{400} a^{4} + \frac{9}{20} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{741279891489036352654232056700376502962708747707304650830233228800} a^{14} + \frac{25905423886861947836243446081753688704892707485425328444138291}{185319972872259088163558014175094125740677186926826162707558307200} a^{13} - \frac{323311198517539024752116942888237509104232040777958091498305979}{741279891489036352654232056700376502962708747707304650830233228800} a^{12} - \frac{24459650048917882168160663507332679789962788984515558907442519}{9265998643612954408177900708754706287033859346341308135377915360} a^{11} + \frac{2477565394721608044891189287075895505401131289225722296301706231}{148255978297807270530846411340075300592541749541460930166046645760} a^{10} - \frac{14074811769519305888069414512289175030171852447775698711298193973}{370639945744518176327116028350188251481354373853652325415116614400} a^{9} + \frac{45352611513032877076385275156109972632324481137854100345344544049}{370639945744518176327116028350188251481354373853652325415116614400} a^{8} - \frac{38869116245198151093445787422837179090419474045029542921680775299}{185319972872259088163558014175094125740677186926826162707558307200} a^{7} + \frac{7088334655163000774125435246904753458277398155374564746024086857}{37063994574451817632711602835018825148135437385365232541511661440} a^{6} + \frac{2621775982403510039622081928160150864130844504769181796298730351}{18531997287225908816355801417509412574067718692682616270755830720} a^{5} + \frac{1189188803571209568368359252667358085764304407484902535996252503}{46329993218064772040889503543773531435169296731706540676889576800} a^{4} + \frac{307372799486417339625299806707184027140465497433892686328169099}{926599864361295440817790070875470628703385934634130813537791536} a^{3} + \frac{174056006371211195737863670705718990248475204059250722645452719}{463299932180647720408895035437735314351692967317065406768895768} a^{2} + \frac{31626544660773286983948879496942185409677363215609287958732571}{231649966090323860204447517718867657175846483658532703384447884} a + \frac{28353623316033888217286145800611823527737949230865748313035930}{57912491522580965051111879429716914293961620914633175846111971}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15924172782800000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5184000 |
| The 79 conjugacy class representatives for [1/2.S(5)^3]S(3) are not computed |
| Character table for [1/2.S(5)^3]S(3) is not computed |
Intermediate fields
| 3.3.229.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | $15$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.6.6 | $x^{4} - 20$ | $2$ | $2$ | $6$ | $D_{4}$ | $[2, 3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.5 | $x^{4} + 2 x^{2} - 4$ | $2$ | $2$ | $6$ | $D_{4}$ | $[2, 3]^{2}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.8.0.1 | $x^{8} - x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 229 | Data not computed | ||||||
| 56437 | Data not computed | ||||||
| 164142457 | Data not computed | ||||||