Normalized defining polynomial
\( x^{15} - 2106 x^{13} - 16848 x^{12} + 1275552 x^{11} + 20914272 x^{10} - 114496200 x^{9} - 5385465792 x^{8} - 56522264736 x^{7} - 306744441216 x^{6} - 988894842240 x^{5} - 1993571205120 x^{4} - 2541782310400 x^{3} - 1994829772800 x^{2} - 880997376000 x - 167809024000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33146623676447473240676184720625960099206358036156416000000=2^{18}\cdot 3^{20}\cdot 5^{6}\cdot 19^{2}\cdot 53^{4}\cdot 773^{4}\cdot 1510646329^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $7968.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19, 53, 773, 1510646329$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} - \frac{1}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{40} a^{6} - \frac{1}{20} a^{4} + \frac{1}{10} a^{3}$, $\frac{1}{80} a^{7} - \frac{1}{40} a^{5} + \frac{1}{20} a^{4} - \frac{1}{2} a$, $\frac{1}{800} a^{8} + \frac{3}{400} a^{6} + \frac{1}{100} a^{5} + \frac{2}{25} a^{4} - \frac{1}{50} a^{3} + \frac{7}{100} a^{2} - \frac{1}{5}$, $\frac{1}{3200} a^{9} + \frac{3}{1600} a^{7} - \frac{1}{100} a^{6} - \frac{1}{200} a^{5} + \frac{1}{50} a^{4} - \frac{93}{400} a^{3} - \frac{1}{10} a^{2} - \frac{1}{20} a$, $\frac{1}{121600} a^{10} - \frac{17}{60800} a^{8} - \frac{17}{7600} a^{7} + \frac{7}{3800} a^{6} - \frac{13}{3800} a^{5} + \frac{747}{15200} a^{4} - \frac{39}{380} a^{3} - \frac{71}{760} a^{2} - \frac{7}{38} a - \frac{1}{19}$, $\frac{1}{2432000} a^{11} + \frac{97}{1216000} a^{9} - \frac{93}{152000} a^{8} - \frac{1701}{304000} a^{7} - \frac{659}{76000} a^{6} - \frac{337}{60800} a^{5} + \frac{4707}{38000} a^{4} + \frac{17}{4750} a^{3} - \frac{4317}{19000} a^{2} - \frac{67}{3800} a - \frac{11}{50}$, $\frac{1}{24320000} a^{12} - \frac{43}{12160000} a^{10} + \frac{97}{1520000} a^{9} - \frac{1271}{3040000} a^{8} + \frac{4191}{760000} a^{7} - \frac{2209}{608000} a^{6} - \frac{2593}{380000} a^{5} - \frac{10049}{380000} a^{4} + \frac{15573}{190000} a^{3} - \frac{3229}{38000} a^{2} + \frac{151}{9500} a - \frac{41}{475}$, $\frac{1}{97280000000} a^{13} - \frac{31}{2432000000} a^{12} + \frac{4827}{48640000000} a^{11} + \frac{1681}{3040000000} a^{10} + \frac{51783}{1520000000} a^{9} - \frac{1205309}{3040000000} a^{8} - \frac{10232229}{2432000000} a^{7} + \frac{4392963}{380000000} a^{6} + \frac{41257967}{3040000000} a^{5} + \frac{10361443}{760000000} a^{4} - \frac{10474419}{152000000} a^{3} - \frac{2539109}{19000000} a^{2} + \frac{2515669}{7600000} a - \frac{361253}{1900000}$, $\frac{1}{12451840000000} a^{14} - \frac{11}{3112960000000} a^{13} + \frac{59307}{6225920000000} a^{12} - \frac{250003}{1556480000000} a^{11} + \frac{592771}{194560000000} a^{10} - \frac{378373}{389120000000} a^{9} - \frac{203591401}{1556480000000} a^{8} - \frac{96871929}{20480000000} a^{7} + \frac{3720417951}{389120000000} a^{6} + \frac{255139447}{12160000000} a^{5} - \frac{9817790267}{97280000000} a^{4} - \frac{953378699}{4864000000} a^{3} - \frac{606692383}{4864000000} a^{2} + \frac{22356689}{121600000} a + \frac{10827353}{60800000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3920360683090000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 71 conjugacy class representatives for [1/2.S(5)^3]3 are not computed |
| Character table for [1/2.S(5)^3]3 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $15$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | R | $15$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | $15$ | $15$ | $15$ | R | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.2 | $x^{6} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 53 | Data not computed | ||||||
| 773 | Data not computed | ||||||
| 1510646329 | Data not computed | ||||||