Properties

Label 15.15.3292242610...1744.1
Degree $15$
Signature $[15, 0]$
Discriminant $2^{8}\cdot 3^{20}\cdot 11^{6}\cdot 113^{6}$
Root discriminant $108.27$
Ramified primes $2, 3, 11, 113$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T88

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![11116, 31908, -201060, -582802, -311052, 281520, 283696, -6660, -70686, -13289, 6309, 1971, -137, -78, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 78*x^13 - 137*x^12 + 1971*x^11 + 6309*x^10 - 13289*x^9 - 70686*x^8 - 6660*x^7 + 283696*x^6 + 281520*x^5 - 311052*x^4 - 582802*x^3 - 201060*x^2 + 31908*x + 11116)
 
gp: K = bnfinit(x^15 - 78*x^13 - 137*x^12 + 1971*x^11 + 6309*x^10 - 13289*x^9 - 70686*x^8 - 6660*x^7 + 283696*x^6 + 281520*x^5 - 311052*x^4 - 582802*x^3 - 201060*x^2 + 31908*x + 11116, 1)
 

Normalized defining polynomial

\( x^{15} - 78 x^{13} - 137 x^{12} + 1971 x^{11} + 6309 x^{10} - 13289 x^{9} - 70686 x^{8} - 6660 x^{7} + 283696 x^{6} + 281520 x^{5} - 311052 x^{4} - 582802 x^{3} - 201060 x^{2} + 31908 x + 11116 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3292242610475668461259680831744=2^{8}\cdot 3^{20}\cdot 11^{6}\cdot 113^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $108.27$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 11, 113$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{226} a^{12} - \frac{8}{113} a^{11} - \frac{29}{113} a^{10} - \frac{21}{226} a^{9} - \frac{93}{226} a^{8} - \frac{27}{226} a^{7} - \frac{103}{226} a^{6} - \frac{34}{113} a^{5} + \frac{3}{113} a^{4} - \frac{15}{113} a^{3} - \frac{2}{113} a^{2} + \frac{53}{113} a - \frac{8}{113}$, $\frac{1}{226} a^{13} - \frac{44}{113} a^{11} - \frac{45}{226} a^{10} + \frac{23}{226} a^{9} + \frac{67}{226} a^{8} - \frac{83}{226} a^{7} + \frac{46}{113} a^{6} + \frac{24}{113} a^{5} + \frac{33}{113} a^{4} - \frac{16}{113} a^{3} + \frac{21}{113} a^{2} + \frac{49}{113} a - \frac{15}{113}$, $\frac{1}{38898173661375923393822} a^{14} - \frac{16332926405912642792}{19449086830687961696911} a^{13} - \frac{23946530732984685121}{38898173661375923393822} a^{12} + \frac{9577299947668893462187}{38898173661375923393822} a^{11} + \frac{8073362930260791591043}{38898173661375923393822} a^{10} + \frac{9177519763461059548883}{19449086830687961696911} a^{9} - \frac{6683875684332996812580}{19449086830687961696911} a^{8} - \frac{3787448351856030291461}{38898173661375923393822} a^{7} - \frac{6995032228877127471563}{38898173661375923393822} a^{6} - \frac{8326629621482388913634}{19449086830687961696911} a^{5} + \frac{8351749945383590269600}{19449086830687961696911} a^{4} - \frac{9301193885134492852746}{19449086830687961696911} a^{3} + \frac{8702270933677347433121}{19449086830687961696911} a^{2} - \frac{168602095886405153731}{19449086830687961696911} a + \frac{725883396226401906300}{19449086830687961696911}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 215812156738 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T88:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 233280
The 48 conjugacy class representatives for [1/2.S(3)^5]A(5)
Character table for [1/2.S(3)^5]A(5) is not computed

Intermediate fields

5.5.6180196.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 30 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ R $15$ $15$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ $15$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ $15$ ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ $15$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.6.6.8$x^{6} + 2 x + 2$$6$$1$$6$$S_4$$[4/3, 4/3]_{3}^{2}$
3Data not computed
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.3.2.1$x^{3} - 11$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.6.4.1$x^{6} + 220 x^{3} + 41503$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
113Data not computed