Normalized defining polynomial
\( x^{15} - x^{14} - 70 x^{13} + 37 x^{12} + 1714 x^{11} - 646 x^{10} - 19122 x^{9} + 7308 x^{8} + 103129 x^{7} - 46623 x^{6} - 259504 x^{5} + 140547 x^{4} + 239121 x^{3} - 152667 x^{2} + 7714 x + 361 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3203887529980253057019236799601=151^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $108.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(151\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{151}(32,·)$, $\chi_{151}(1,·)$, $\chi_{151}(2,·)$, $\chi_{151}(4,·)$, $\chi_{151}(38,·)$, $\chi_{151}(8,·)$, $\chi_{151}(64,·)$, $\chi_{151}(128,·)$, $\chi_{151}(76,·)$, $\chi_{151}(16,·)$, $\chi_{151}(19,·)$, $\chi_{151}(85,·)$, $\chi_{151}(118,·)$, $\chi_{151}(105,·)$, $\chi_{151}(59,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{38} a^{8} + \frac{5}{38} a^{7} + \frac{9}{38} a^{6} - \frac{9}{38} a^{5} + \frac{17}{38} a^{4} - \frac{13}{38} a^{3} - \frac{17}{38} a^{2} - \frac{6}{19} a$, $\frac{1}{76} a^{9} - \frac{1}{76} a^{8} - \frac{1}{38} a^{7} + \frac{13}{76} a^{6} - \frac{5}{76} a^{5} - \frac{1}{76} a^{4} + \frac{23}{76} a^{3} - \frac{6}{19} a^{2} - \frac{1}{19} a + \frac{1}{4}$, $\frac{1}{76} a^{10} - \frac{1}{76} a^{8} - \frac{17}{76} a^{7} - \frac{3}{19} a^{6} + \frac{7}{38} a^{5} + \frac{9}{38} a^{4} + \frac{11}{76} a^{3} - \frac{6}{19} a^{2} + \frac{29}{76} a + \frac{1}{4}$, $\frac{1}{76} a^{11} - \frac{1}{76} a^{6} - \frac{35}{76} a^{5} - \frac{13}{38} a^{4} + \frac{31}{76} a^{3} - \frac{35}{76} a^{2} - \frac{11}{76} a - \frac{1}{4}$, $\frac{1}{152} a^{12} - \frac{1}{152} a^{11} - \frac{1}{152} a^{10} - \frac{1}{152} a^{9} - \frac{1}{76} a^{8} - \frac{1}{76} a^{7} + \frac{5}{152} a^{6} + \frac{9}{38} a^{5} - \frac{7}{38} a^{4} - \frac{6}{19} a^{3} + \frac{8}{19} a^{2} + \frac{15}{152} a + \frac{3}{8}$, $\frac{1}{2888} a^{13} - \frac{5}{2888} a^{12} + \frac{7}{2888} a^{11} + \frac{9}{2888} a^{10} + \frac{3}{1444} a^{9} - \frac{3}{361} a^{8} - \frac{425}{2888} a^{7} - \frac{52}{361} a^{6} + \frac{96}{361} a^{5} + \frac{70}{361} a^{4} - \frac{9}{76} a^{3} + \frac{707}{2888} a^{2} - \frac{637}{2888} a - \frac{15}{76}$, $\frac{1}{69316218679988872} a^{14} + \frac{783687238210}{8664527334998609} a^{13} + \frac{33922654681195}{34658109339994436} a^{12} - \frac{179946747190725}{34658109339994436} a^{11} - \frac{251017291612215}{69316218679988872} a^{10} + \frac{105589893027543}{17329054669997218} a^{9} + \frac{284719059767535}{69316218679988872} a^{8} - \frac{3186922461638831}{69316218679988872} a^{7} + \frac{38896404752123}{293712791016902} a^{6} - \frac{1114562630524501}{8664527334998609} a^{5} + \frac{8124159101072861}{17329054669997218} a^{4} + \frac{16835600166797607}{69316218679988872} a^{3} + \frac{6559595555488705}{17329054669997218} a^{2} - \frac{20410435539837}{1174851164067608} a + \frac{181980558047323}{912055508947222}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63003998024.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.22801.1, 5.5.519885601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{15}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 151 | Data not computed | ||||||