Normalized defining polynomial
\( x^{15} - 2 x^{14} - 131 x^{13} + 582 x^{12} + 4862 x^{11} - 37014 x^{10} + 4666 x^{9} + 624063 x^{8} - 2105658 x^{7} + 1891060 x^{6} + 3272277 x^{5} - 8403710 x^{4} + 5121648 x^{3} + 1384213 x^{2} - 2005313 x + 229963 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(318300180965960649704233197114049=7^{10}\cdot 101^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $146.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(707=7\cdot 101\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{707}(1,·)$, $\chi_{707}(387,·)$, $\chi_{707}(36,·)$, $\chi_{707}(102,·)$, $\chi_{707}(289,·)$, $\chi_{707}(137,·)$, $\chi_{707}(491,·)$, $\chi_{707}(589,·)$, $\chi_{707}(541,·)$, $\chi_{707}(592,·)$, $\chi_{707}(690,·)$, $\chi_{707}(499,·)$, $\chi_{707}(506,·)$, $\chi_{707}(701,·)$, $\chi_{707}(95,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17} a^{12} + \frac{1}{17} a^{11} - \frac{4}{17} a^{10} + \frac{8}{17} a^{9} - \frac{2}{17} a^{8} + \frac{2}{17} a^{7} + \frac{7}{17} a^{6} + \frac{2}{17} a^{5} + \frac{8}{17} a^{4} + \frac{6}{17} a^{3} - \frac{7}{17} a^{2} - \frac{3}{17} a - \frac{5}{17}$, $\frac{1}{697} a^{13} - \frac{16}{697} a^{12} + \frac{336}{697} a^{11} - \frac{179}{697} a^{10} - \frac{36}{697} a^{9} + \frac{189}{697} a^{8} + \frac{160}{697} a^{7} - \frac{304}{697} a^{6} + \frac{229}{697} a^{5} + \frac{142}{697} a^{4} + \frac{180}{697} a^{3} - \frac{139}{697} a^{2} + \frac{63}{697} a - \frac{17}{41}$, $\frac{1}{2737312400455839842137307302969343} a^{14} + \frac{1649659167455292845913172409604}{2737312400455839842137307302969343} a^{13} + \frac{43259800365359820972326095818882}{2737312400455839842137307302969343} a^{12} + \frac{1149013125699502827518371980113142}{2737312400455839842137307302969343} a^{11} - \frac{96668407606965666725410147886587}{2737312400455839842137307302969343} a^{10} + \frac{1032081151056489373110071090914587}{2737312400455839842137307302969343} a^{9} + \frac{560451049435184754062379812174656}{2737312400455839842137307302969343} a^{8} + \frac{733679772114180609028494303395871}{2737312400455839842137307302969343} a^{7} - \frac{1336073046350181907045825487454210}{2737312400455839842137307302969343} a^{6} - \frac{74616233869364574688521348434974}{2737312400455839842137307302969343} a^{5} - \frac{829224596279518752901730596488287}{2737312400455839842137307302969343} a^{4} + \frac{102010989449895656202212074801793}{2737312400455839842137307302969343} a^{3} - \frac{10529120486766409311304469791337}{66763717084288776637495300072423} a^{2} + \frac{1308885188668814407102394131770412}{2737312400455839842137307302969343} a - \frac{665860920156002335736478112723629}{2737312400455839842137307302969343}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 163490942894.50964 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 5.5.104060401.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | $15$ | R | $15$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{5}$ | $15$ | $15$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.15.10.1 | $x^{15} + 4116 x^{6} - 2401 x^{3} + 1075648$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |
| $101$ | 101.15.12.1 | $x^{15} + 5555 x^{10} + 6161404 x^{5} + 165931006351$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |