Normalized defining polynomial
\( x^{15} - 2 x^{14} - 69 x^{13} + 154 x^{12} + 1536 x^{11} - 3742 x^{10} - 13104 x^{9} + 32905 x^{8} + 47584 x^{7} - 119624 x^{6} - 71155 x^{5} + 179526 x^{4} + 33394 x^{3} - 87985 x^{2} + 9 x + 2293 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3110568743658022425562755753769=13^{10}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $107.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(533=13\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{533}(256,·)$, $\chi_{533}(1,·)$, $\chi_{533}(100,·)$, $\chi_{533}(133,·)$, $\chi_{533}(92,·)$, $\chi_{533}(42,·)$, $\chi_{533}(139,·)$, $\chi_{533}(365,·)$, $\chi_{533}(16,·)$, $\chi_{533}(529,·)$, $\chi_{533}(469,·)$, $\chi_{533}(406,·)$, $\chi_{533}(508,·)$, $\chi_{533}(510,·)$, $\chi_{533}(165,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{1}{9} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} - \frac{2}{9} a^{4} - \frac{4}{9} a^{3} - \frac{2}{9} a^{2} - \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{711} a^{13} - \frac{26}{711} a^{12} - \frac{80}{711} a^{11} + \frac{19}{711} a^{10} + \frac{56}{711} a^{9} - \frac{29}{237} a^{8} - \frac{203}{711} a^{7} + \frac{355}{711} a^{6} - \frac{301}{711} a^{5} - \frac{179}{711} a^{4} - \frac{307}{711} a^{3} - \frac{4}{79} a^{2} + \frac{103}{711} a + \frac{106}{711}$, $\frac{1}{344808882295121833872425073} a^{14} - \frac{59344290576217239268618}{344808882295121833872425073} a^{13} + \frac{6212453184224208564109192}{114936294098373944624141691} a^{12} + \frac{22368741827787669200887849}{344808882295121833872425073} a^{11} - \frac{8766741049127772105287996}{114936294098373944624141691} a^{10} + \frac{7743990826637024801784748}{114936294098373944624141691} a^{9} + \frac{78172591727999848887353485}{344808882295121833872425073} a^{8} + \frac{71723469324625492652220431}{344808882295121833872425073} a^{7} + \frac{17757094949454585541196584}{344808882295121833872425073} a^{6} - \frac{97563640207924321482990097}{344808882295121833872425073} a^{5} + \frac{75434169704339790768092464}{344808882295121833872425073} a^{4} - \frac{132744173217091114714415096}{344808882295121833872425073} a^{3} + \frac{48655368268936979562044531}{344808882295121833872425073} a^{2} - \frac{56820351422289270531340567}{114936294098373944624141691} a + \frac{45101900530291364641175245}{114936294098373944624141691}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25379435677.580284 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.169.1, 5.5.2825761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | $15$ | $15$ | R | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | $15$ | R | $15$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.15.10.1 | $x^{15} + 79092 x^{6} - 228488 x^{3} + 80199288$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |
| $41$ | 41.15.12.1 | $x^{15} + 2665 x^{10} + 1418764 x^{5} + 25589884853$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |